Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Colloids molecular weights

The first case concerns particles with polymer chains attached to their surfaces. This can be done using chemically (end-)grafted chains, as is often done in the study of model colloids. Alternatively, a block copolymer can be used, of which one of the blocks (the anchor group) adsorbs strongly to the particles. The polymer chains may vary from short alkane chains to high molecular weight polymers (see also section C2.6.2). The interactions between such... [Pg.2678]

Colloidal State. The principal outcome of many of the composition studies has been the delineation of the asphalt system as a colloidal system at ambient or normal service conditions. This particular concept was proposed in 1924 and described the system as an oil medium in which the asphaltene fraction was dispersed. The transition from a coUoid to a Newtonian Hquid is dependent on temperature, hardness, shear rate, chemical nature, etc. At normal service temperatures asphalt is viscoelastic, and viscous at higher temperatures. The disperse phase is a micelle composed of the molecular species that make up the asphaltenes and the higher molecular weight aromatic components of the petrolenes or the maltenes (ie, the nonasphaltene components). Complete peptization of the micelle seems probable if the system contains sufficient aromatic constituents, in relation to the concentration of asphaltenes, to allow the asphaltenes to remain in the dispersed phase. [Pg.367]

Polymeric flocculants are available in various chemical compositions and molecular weight ranges, and they may be nonionic in character or may have predominantly cationic or anionic charges. The range of application varies but, in general, nonionics are well suited to acidic suspensions, anionic flocculants work well in neutral or alkaline environments, and cationics are most effective on organic material and colloidal matter. [Pg.1681]

Ultrafiltration Solution or colloidal suspension of high molecular weight organics One stream concentrated in high molecular weight organics one containing dissolved ions... [Pg.429]

The colloidal palladium solution is prepared as follows A solution of a palladium salt is added to a solution of an alkali salt of an acid of high molecular weight, the sodium salt of protalbinic acid being suitable. An excess of alkali dissolves the precipitate formed, and the solution contains tine palladium in the form of a hydrosol of its hydroxide. The solution is purified by dialysis, and the hydroxide reduced with hydrazine hydrate. On further dialysis and evaporation to dryness a water-soluble product is obtained, consisting of colloidal palladium and sodium protalbinate, the latter acting as a protective colloid. [Pg.355]

The viscosity of a fluid arises from the internal friction of the fluid, and it manifests itself externally as the resistance of the fluid to flow. With respect to viscosity there are two broad classes of fluids Newtonian and non-Newtonian. Newtonian fluids have a constant viscosity regardless of strain rate. Low-molecular-weight pure liquids are examples of Newtonian fluids. Non-Newtonian fluids do not have a constant viscosity and will either thicken or thin when strain is applied. Polymers, colloidal suspensions, and emulsions are examples of non-Newtonian fluids [1]. To date, researchers have treated ionic liquids as Newtonian fluids, and no data indicating that there are non-Newtonian ionic liquids have so far been published. However, no research effort has yet been specifically directed towards investigation of potential non-Newtonian behavior in these systems. [Pg.56]

As RO membranes become looser their salt rejection falls (see Section 31.8.1). Eventually a point is reached at which there is no rejection of salts, but the membrane still rejects particulates, colloids and very large molecules. The membrane pore size can be tailored to a nominal molecular weight cut-off. The resulting filtering process is called ultra-filtration. [Pg.483]

Dextrans are particularly useful and are employed as a plasma substitute. A concentration of about 6% dextran (50,000-100,000 relative molecular weight) has equivalent viscosity and colloid-osmotic properties to blood plasma. Dextran can also be used as non-irritant absorbent wound dressings, an application also suited to alginate gels. [Pg.228]

The early attempts at NMP of S in emulsion used TEMPO and related nitroxides and needed to be carried out at high temperatures (100-130 °C) necessitating a pressure reactor. Problems with colloidal stability and molecular weight control and limiting conversions were reported.215 217... [Pg.482]

Polyacrylamides are nonionic polymers, usually with much higher molecular weights (MW from 100,000 up to 12 or 15 M). They often are copolymerized with polyacrylates. Depending on the MW ratios employed, they may act as colloidal dispersants, sludge conditioners, or flocculants. Nonionics such as polyacrylamides (and isobutylenes) are particularly useful at dispersing uncharged particles. [Pg.446]


See other pages where Colloids molecular weights is mentioned: [Pg.30]    [Pg.18]    [Pg.30]    [Pg.18]    [Pg.411]    [Pg.403]    [Pg.403]    [Pg.2679]    [Pg.2680]    [Pg.445]    [Pg.131]    [Pg.383]    [Pg.27]    [Pg.298]    [Pg.16]    [Pg.36]    [Pg.331]    [Pg.485]    [Pg.397]    [Pg.640]    [Pg.1501]    [Pg.166]    [Pg.307]    [Pg.330]    [Pg.1063]    [Pg.114]    [Pg.116]    [Pg.311]    [Pg.349]    [Pg.361]    [Pg.71]    [Pg.167]    [Pg.191]    [Pg.323]    [Pg.39]    [Pg.43]    [Pg.1]    [Pg.361]    [Pg.62]    [Pg.90]    [Pg.113]    [Pg.80]    [Pg.82]   


SEARCH



Colloids weight

© 2024 chempedia.info