Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Object cohesive strength

A surface is that part of an object which is in direct contact with its environment and hence, is most affected by it. The surface properties of solid organic polymers have a strong impact on many, if not most, of their apphcations. The properties and structure of these surfaces are, therefore, of utmost importance. The chemical stmcture and thermodynamic state of polymer surfaces are important factors that determine many of their practical characteristics. Examples of properties affected by polymer surface stmcture include adhesion, wettability, friction, coatability, permeability, dyeabil-ity, gloss, corrosion, surface electrostatic charging, cellular recognition, and biocompatibility. Interfacial characteristics of polymer systems control the domain size and the stability of polymer-polymer dispersions, adhesive strength of laminates and composites, cohesive strength of polymer blends, mechanical properties of adhesive joints, etc. [Pg.871]

Acoustic cavitation (AC), formation of pulsating cavities in a fluid, occurs when a powerful ultrasound is applied to a non-viscous fluid. The cavities are formed when the variable acoustic pressure in the rarefaction phase exceeds the cohesive strength of the fluid. Under acoustic treatment (AT), cavities grow to resonance dimensions conditioned by frequency, amplitude of oscillations, stiffness properties and external conditions, and start to pulsate synchronously (self-consistently) with acoustic pressure in the medium. The cavities undergo significant strains (compared to their dimensions) and their size decreases under compression up to collapsing. This nonlinear behavior determines the active, destructional character of the cavities near which significant shear velocities, local pressure and temperature bursts occur in the fluid. Cavitation determines the specific character of acoustic treatment of the fluid and effects upon objects resident in the fluid, as well as all consequences of these effects. [Pg.66]

We have already seen from Example 10.1 that van der Waals forces play a major role in the heat of vaporization of liquids, and it is not surprising, in view of our discussion in Section 10.2 about colloid stability, that they also play a significant part in (or at least influence) a number of macroscopic phenomena such as adhesion, cohesion, self-assembly of surfactants, conformation of biological macromolecules, and formation of biological cells. We see below in this chapter (Section 10.7) some additional examples of the relation between van der Waals forces and macroscopic properties of materials and investigate how, as a consequence, measurements of macroscopic properties could be used to determine the Hamaker constant, a material property that represents the strength of van der Waals attraction (or repulsion see Section 10.8b) between macroscopic bodies. In this section, we present one illustration of the macroscopic implications of van der Waals forces in thermodynamics, namely, the relation between the interaction forces discussed in the previous section and the van der Waals equation of state. In particular, our objective is to relate the molecular van der Waals parameter (e.g., 0n in Equation (33)) to the parameter a that appears in the van der Waals equation of state ... [Pg.477]


See other pages where Object cohesive strength is mentioned: [Pg.425]    [Pg.31]    [Pg.677]    [Pg.123]    [Pg.121]    [Pg.4]    [Pg.134]    [Pg.1050]    [Pg.79]    [Pg.211]    [Pg.704]    [Pg.12]    [Pg.648]    [Pg.249]    [Pg.96]    [Pg.189]    [Pg.944]    [Pg.1508]    [Pg.70]    [Pg.4]    [Pg.269]    [Pg.439]   
See also in sourсe #XX -- [ Pg.102 ]




SEARCH



Cohesion

Cohesiveness

Cohesives

Cohesivity

© 2024 chempedia.info