Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cocurrent flow, mathematical modeling

Fixed-bed reactors are used for testing commercial catalysts of larger particle sizes and to collect data for scale-up (validation of mathematical models, studying the influence of transport processes on overall reactor performance, etc.). Catalyst particles with a size ranging from 1 to 10 mm are tested using reactors of 20 to 100 mm ID. The reactor diameter can be decreased if the catalyst is diluted by fine inert particles the ratio of the reactor diameter to the size of catalyst particles then can be decreased to 3 1 (instead of the 10 to 20 recommended for fixed-bed catalytic reactors). This leads to a lower consumption of reactants. Very important for proper operation of fixed-bed reactors, both in cocurrent and countercurrent mode, is a uniform distribution of both phases over the entire cross-section of the reactor. If this is not the case, reactor performance will be significantly falsified by flow maldistribution. [Pg.301]

The differences between the TBR and the MR originate from the differences in catalyst geometry, which affect catalyst load, internal and external mass transfer resistance, contact areas, as well as pressure drop. These effects have been analyzed by Edvinsson and Cybulski [ 14,26] via computer simulations based on relatively simple mathematical models of the MR and TBR. They considered catalytic consecutive hydrogenation reactions carried out in a plug-flow reactor with cocurrent downflow of both phases, operated isothermally in a pseudo-steady state all fluctuations were modeled by a corresponding time average ... [Pg.286]

The equations presented above can be used (with or without modifications) to describe mass transfer processes in cocurrent flow. See, for example, the work of Modine (1963), whose wetted wall column experiments formed the basis for Example 11.5.3 and are the subject of further discussion in Section 15.4. The coolant energy balance is not needed to model an adiabatic wetted wall column and must be replaced by an energy balance for the liquid phase. Readers are asked to develop a complete mathematical model of a wetted wall column in Exercise 15.2.1. [Pg.464]

Arranging the crossflows in series approximates true cocurrent or countercurrent flow. Mathematical analyses of simple heat transfer were published on cocurrent or countercurrent behavior for a series of crossflows (1., ). This paper deals with the mathematical modeling and experiments for simultaneous reaction and heat transfer. [Pg.83]


See other pages where Cocurrent flow, mathematical modeling is mentioned: [Pg.580]    [Pg.579]    [Pg.123]   
See also in sourсe #XX -- [ Pg.580 ]




SEARCH



Cocurrent

Cocurrent flow

© 2024 chempedia.info