Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt sulfide catalyst

Pier, Jacob, and Simon194 prepared an iron sulfide or cobalt sulfide catalyst as follows ... [Pg.27]

An interesting variation of the hydrogenation process involves the use of a special cobalt sulfide catalyst to produce 1-deoxy-l-mercaptosorbitol (37) (thiosorbitol) from glucose. [Pg.248]

Alternative means for removal of carbonyl sulfide for gas streams iavolve hydrogenation. For example, the Beavon process for removal of sulfur compounds remaining ia Claus unit tail gases iavolves hydrolysis and hydrogenation over cobalt molybdate catalyst resulting ia the conversion of carbonyl sulfide, carbon disulfide, and other sulfur compounds to hydrogen sulfide (25). [Pg.130]

When the Claus reaction is carried out in aqueous solution, the chemistry is complex and involves polythionic acid intermediates (105,211). A modification of the Claus process (by Shell) uses hydrogen or a mixture of hydrogen and carbon monoxide to reduce sulfur dioxide, carbonyl sulfide, carbon disulfide, and sulfur mixtures that occur in Claus process off-gases to hydrogen sulfide over a cobalt molybdate catalyst at ca 300°C (230). [Pg.144]

Metal oxides, sulfides, and hydrides form a transition between acid/base and metal catalysts. They catalyze hydrogenation/dehydro-genation as well as many of the reactions catalyzed by acids, such as cracking and isomerization. Their oxidation activity is related to the possibility of two valence states which allow oxygen to be released and reabsorbed alternately. Common examples are oxides of cobalt, iron, zinc, and chromium and hydrides of precious metals that can release hydrogen readily. Sulfide catalysts are more resistant than metals to the formation of coke deposits and to poisoning by sulfur compounds their main application is in hydrodesulfurization. [Pg.2094]

Some studies of potential commercial significance have been made. For instance, deposition of catalyst some distance away from the pore mouth extends the catalyst s hfe when pore mouth deactivation occui s. Oxidation of CO in automobile exhausts is sensitive to the catalyst profile. For oxidation of propane the activity is eggshell > uniform > egg white. Nonuniform distributions have been found superior for hydrodemetaUation of petroleum and hydrodesulfuriza-tion with molybdenum and cobalt sulfides. Whether any commercial processes with programmed pore distribution of catalysts are actually in use is not mentioned in the recent extensive review of GavriUidis et al. (in Becker and Pereira, eds., Computer-Aided Design of Catalysts, Dekker, 1993, pp. 137-198), with the exception of monohthic automobile exhaust cleanup where the catalyst may be deposited some distance from the mouth of the pore and where perhaps a 25-percent longer life thereby may be attained. [Pg.2098]

Table III shows that both cobalt and arsenic affect the Mo/Al ratio as measured by XFS. These elements cause the Mo/Al ratio on both calcined and sulfided catalysts to decrease. Again this is due either to covering of molybdenum by promoters or more likely to some change in molybdenum dispersion Induced by the promoters. Table III shows that both cobalt and arsenic affect the Mo/Al ratio as measured by XFS. These elements cause the Mo/Al ratio on both calcined and sulfided catalysts to decrease. Again this is due either to covering of molybdenum by promoters or more likely to some change in molybdenum dispersion Induced by the promoters.
Promotional effects of sulfide can evidently be explained, because exposure of reduced metals Is Increased on reduced sulfided catalysts. The role of cobalt Is less clear. It Is normally not fully reduced. It apparently does not promote greater exposure of Mo In any form detected, either In the presence or absence of sulfide. On the contrary. It evidently only decreases the concentration of exposed Mo atoms, although, at concentrations typically used, most. Mo atoms are unaffected by Co. Either some property of Co alone or some local cooperative effect of adjacent Co and Mo must explain promotion. Simple mechanical mixtures will not give the synergism observed, however (1-4). [Pg.430]

Beavon [Beavon Sulfur Removal] Also called BSR. A process for removing residual sulfur compounds from the effluent gases from the Claus process. Catalytic hydrogenation over a cobalt/molybdena catalyst converts carbonyl sulfide, carbon disulfide, and other... [Pg.33]

Isocracking A hydrocracking process developed and licensed by Chevron Research Company. The catalyst is nickel or cobalt sulfide on an aluminosilicate. First commercialized in 1962 more than 45 units had been built by 1994. See also Isomax. [Pg.146]

Another SIMS study on model systems concerns molybdenum sulfide catalysts. The removal of sulfur from heavy oil fractions is carried out over molybdenum catalysts promoted with cobalt or nickel, in processes called hydrodesulfurization (HDS) [17]. Catalysts are prepared in the oxidic state but have to be sulfided in a mixture of H2S and H2 in order to be active. SIMS sensitively reveals the conversion of Mo03 into MoSi, in model systems of MoCf supported on a thin layer of Si02 [21]. [Pg.107]

We begin with the structure of a noble metal catalyst. The emphasis is on the preparation of rhodium on aluminum oxide and the nature of the metal-support interaction. Next we focus on a promoted surface in a review of potassium on noble metals. This section illustrates how single crystal techniques have been applied to investigate to what extent promoters perturb the surface of a catalyst. The third study deals with the sulfidic cobalt-molybdenum catalysts used in hydrotreating reactions. Here we are concerned with the composition and structure of the catalytically active... [Pg.246]

Cobalt-molybdenum catalysts are in general much more active for HDS than single molybdenum catalysts. Thus, it is essential to investigate the state of cobalt in the sulfided Co-Mo/Al203 catalyst. [Pg.272]

Figure 9.19 In situ Mossbauer emission spectra of 57Co in (left) a series of sulfided Co-Mo/A1203 catalysts and (right) MoS2 particles doped with different amounts of cobalt, corresponding to Co/Mo ratios of a) about 3 parts per million, b) 0.05 and c) 0.25. The Co-Mo-S phase, active in the HDS reaction, has a spectrum unlike that of any bulk cobalt sulfide and is most clearly observed in the spectra of Co-Mo/Al203 catalysts of low Co content, and in the MoS2 particles doped with ppms of cobalt (from Wivel et al. [70] and Topspe et al. [71]). Figure 9.19 In situ Mossbauer emission spectra of 57Co in (left) a series of sulfided Co-Mo/A1203 catalysts and (right) MoS2 particles doped with different amounts of cobalt, corresponding to Co/Mo ratios of a) about 3 parts per million, b) 0.05 and c) 0.25. The Co-Mo-S phase, active in the HDS reaction, has a spectrum unlike that of any bulk cobalt sulfide and is most clearly observed in the spectra of Co-Mo/Al203 catalysts of low Co content, and in the MoS2 particles doped with ppms of cobalt (from Wivel et al. [70] and Topspe et al. [71]).
Several groups [64-67,76] have reported EXAFS studies on sulfided cobalt-molybdenum catalysts. Figure 9.22 shows the Fourier transforms of M0S2 and of sulfided molybdenum and cobalt-molybdenum catalysts supported on carbon,... [Pg.276]

Similarly to the case of direct-oxidation anode materials, sulfur-tolerant anode materials based on sulfides [6, 7] or double-perovskite oxides have special requirements for their processing into SOFC layers. For example, nickel sulfide-promoted molybdenum sulfide is tolerant to high sulfur levels [7], However, it has a low melting temperature [6] that has resulted in the development of cobalt sulfide as a stabilizer of the molybdenum sulfide catalyst [6], CoS-MoS2 admixed with Ag has an even higher performance in H2S-containing fuels than in pure H2 [6]. However, processing methods such as PS, infiltration, or sol-gel techniques that can process... [Pg.274]

IR spectra, 27 283, 284 magnetic measurements, 27 280 oxidized state, 27 289 Raman spectra, 27 284 reduced state, 27 291 reflectance spectroscopy, 27 279 X-ray diffraction, 27 272, 273 support interactions, 27 290 Cobalt monoxide, field effect, 27 44, 45 Cobalt(nickel)-molybdenum-sulfide catalysts, 42 417... [Pg.79]

Combustion, 27 189, 190 reaction, sites for, 33 161-166 reaction scheme, 27 190, 196 Commercial isomerization, 6 197 CoMo catalysts, 40 181 See also Cobalt (nickel)-molybdenum-sulfide catalysts Compact-diffuse layer model, 30 224 Compensation behavior, 26 247-315 active surface, 26 253, 254 Arrhenius parameters, see Arrhenius parameters... [Pg.79]

In the SCOT process, the sulfur compounds in the Claus tail gas are converted to hydrogen sulfide by heating and passing it through a cobalt-molybdenum catalyst with the addition of a reducing gas. The gas is then cooled and contacted with a solution of diisopropanolamine (DIPA) that removes all but trace amounts of hydrogen sulfide. The sulfide-rich diisopropanolamine is sent to a stripper, where hydrogen sulfide gas is removed and sent to the Claus plant. The diisopropanolamine is returned to the absorption column. [Pg.246]


See other pages where Cobalt sulfide catalyst is mentioned: [Pg.739]    [Pg.58]    [Pg.61]    [Pg.739]    [Pg.58]    [Pg.61]    [Pg.165]    [Pg.428]    [Pg.353]    [Pg.134]    [Pg.410]    [Pg.39]    [Pg.380]    [Pg.99]    [Pg.99]    [Pg.2]    [Pg.3]    [Pg.13]    [Pg.144]    [Pg.146]    [Pg.117]    [Pg.17]    [Pg.280]    [Pg.278]    [Pg.56]    [Pg.95]    [Pg.79]    [Pg.103]    [Pg.182]    [Pg.243]    [Pg.246]    [Pg.308]   
See also in sourсe #XX -- [ Pg.131 ]




SEARCH



Catalyst sulfidic

Cobalt catalyst

Cobalt catalysts catalyst

Cobalt sulfide phase structure catalysts

Cobalt sulfides, hydrogenation catalyst

Cobalt-Molybdenum Sulfide Hydrodesulfurization Catalysts

Cobalt-molybdenum catalysts sulfided

Cobalt-molybdenum sulfide catalyst

Cobaltous oxide catalysts sulfidation

Sulfides catalysts

© 2024 chempedia.info