Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalamin vitamin intrinsic factor

The human Bu-binder intrinsic factor is a glycoprotein of ca. 44kDa, with a high binding constant (in 1 1 complexes) for vitamin B12 (1) and other cobalamins. The intrinsic factor is secreted by cells of the gastric mucosa and specifically binds cobalamins and carries them to the ileum. There the ileum receptor protein accepts the corrinoid from the intrinsic factor complex and transports it further across the intestinal epithelial absorptive cell. The cobalamins then appear to be bound to transcobalamin II and transported in the blood in this way to membrane-bound transcobalamin/corrin receptor proteins of the specific cells. ... [Pg.807]

Radioisotope dilution assays are based on the principle of competition between radioactive labeled ( Co) vitamin B 2 and cobalamins extracted from matrices for binding sites on the intrinsic factor (a glycoprotein). Binding is in proportion to the concentration of the radioactive and nonradio active B 2 with the concentration of intrinsic factor as the limiting factor. Free cobalamins are separated from those bound on the intrinsic factor by absorption... [Pg.114]

Vitamin B12 is special in as far as its absorption depends on the availability of several secretory proteins, the most important being the so-called intrinsic factor (IF). IF is produced by the parietal cells of the fundic mucosa in man and is secreted simultaneously with HC1. In the small intestine, vitamin B12 (extrinsic factor) binds to the alkali-stable gastric glycoprotein IF. The molecules form a complex that resists intestinal proteolysis. In the ileum, the IF-vitamin B 12-complex attaches to specific mucosal receptors of the microvilli as soon as the chymus reaches a neutral pH. Then either cobalamin alone or the complex as a whole enters the mucosal cell. [Pg.1291]

Oral vitamin B12 supplementation appears to be as effective as parenteral, even in patients with pernicious anemia, because the alternate vitamin B12 absorption pathway is independent of intrinsic factor. Oral cobalamin is initiated at 1 to 2 mg daily for 1 to 2 weeks, followed by 1 mg daily. [Pg.380]

The most likely reason for cobalamin deficiency is pernicious anemia (failure to absorb vitamin B 2 in the absence of intrinsic factor from parietal cells). Vitamin Bjj absorption also decreases with aging and in individuals with chronic pancreatitis. Less common reasons for Bjj deficiency include a long-term completely vegetarian diet (plants don t contain vitamin Bjj) and infection with Diphyllobothrium latum, a parasite found in raw fish. Excess vitamin B,2 is stored in the body, so deficiencies develop slowly. [Pg.250]

Vitamin Bn deficiency Deficiency, although rare, results in two serious problems megaloblastic anaemia (which is identical to that caused by folate deficiency) and a specific neuropathy called Bi2-associated neuropathy or cobalamin-deficiency-associated neuropathy (previously called, subacute combined degeneration of the cord). A normal healthy adult can survive more than a decade without dietary vitamin B12 without any signs of deficiency since it is synthesised by microorganisms in the colon and then absorbed. However, pernicious anaemia develops fairly rapidly in patients who have a defective vitamin B12 absorption system due to a lack of intrinsic factor. It results in death in 3 days. Minot and Murphy discovered that giving patients liver, which contains the intrinsic factor, and which is lightly cooked to avoid denaturation, cured the anaemia. For this discovery they were awarded the Nobel Prize in Medicine in 1934. [Pg.335]

Cobalamine can only be resorbed in the small intestine when the gastric mucosa secretes what is known as intrinsic factor—a glycoprotein that binds cobalamine (the extrinsic factor) and thereby protects it from degradation. In the blood, the vitamin is bound to a special protein known as trans-cobalamin. The liver is able to store vitamin Bi2 in amounts suf cient to last for several months. Vitamin B12 deficiency is usually due to an absence of intrinsic factor and the resulting resorption disturbance. This leads to a disturbance in blood formation known as pernicious anemia. [Pg.368]

Cyanocobalamin and the derivative hydroxo-cobalamin, given IM or deep subcutaneously, are indicated for treating vitamin B12 deficiency. Only in strict vegetarians oral preparations may be effective. Oral preparations with added intrinsic factor mostly are not reliably in patients with pernicious anemia. More than half the dose of cyanocobalamin injected is excreted in the urine within 48 hours and the therapeutic advantages of doses higher than 100 pg are questionable because of this rapid eiimination. As... [Pg.369]

Vitamin B12 consists of a porphyrin-like ring with a central cobalt atom attached to a nucleotide. Various organic groups may be covalently bound to the cobalt atom, forming different cobalamins. Deoxyadenosylcobalamin and methylcobalamin are the active forms of the vitamin in humans. Cyanocobalamin and hydroxocobalamin (both available for therapeutic use) and other cobalamins found in food sources are converted to the active forms. The ultimate source of vitamin Bi2 is from microbial synthesis the vitamin is not synthesized by animals or plants. The chief dietary source of vitamin Bi2 is microbially derived vitamin B12 in meat (especially liver), eggs, and dairy products. Vitamin Bi2 is sometimes called extrinsic factor to differentiate it from intrinsic factor, a protein normally secreted by the stomach that is required for gastrointestinal uptake of dietary vitamin B12. [Pg.735]

This case prompted a report of 10 metformin- associated patients with cobalamin deficiency among 162 patients with vitamin Bi2 concentrations below 200 pg/ml (91). They had taken a mean dose of metformin of 2015 mg/ day for an average of 8.9 years. The mean vitamin B12 concentration was 140 pg/ml. All had normal serum folate and creatinine concentrations and no antibodies to intrinsic factor. In one patient there was malabsorption. [Pg.374]

Oral vitamin Bj2 supplementation appears to be as effective as parenteral, even in patients with pernicious anemia, because the alternate vitamin Bj2 absorption pathway is independent of intrinsic factor. Oral cobalamin is initiated at 1 to 2 mg daily for 1 to 2 weeks, followed by 1 mg daUy. Parenteral therapy is more rapid acting than oral therapy and should be used if neurologic symptoms are present. A popular regimen is cyanocobalamin 1,000 meg daily for 1 week, then weekly for 1 month, and then monthly. When symptoms resolve, daily oral administration can be initiated. [Pg.367]

Considerably more intrinsic factor is secreted than is needed for the binding and absorption of dietary vitamin B12, which requires only about 1 % of the total intrinsic factor available. There is a considerable enterohepatic circulation of vitamin B12, variously estimated as between 1 to 9 /rg per day, about the same as the dietary intake. Like dietary vitamin B12 bound to salivary cobalophilin, the biliary cobalophUins are hydrolyzed in the duodenum, and the vitamin released binds to intrinsic factor, thus permitting reabsorption in the Ueum. Whereas cobalophUins and transcorrin III have low specificity, and wUl bind a variety of corrinoids, intrinsic factor orUy binds cobalamins, and only the biologicaUy active vitamin wiU be reabsorbed to any significant extent. [Pg.302]

Cobalmin Deficiency. Pernicious anemia is the disease associated with vitamin Bi2 deficiency. It is usually caused by the inability to produce intrinsic factor. Indeed, many times the vitamin must be administered by injection. The blood picture, a megaloblastic anemia, is indistinguishable from that caused by folic acid deficiency. Indeed folic acid supplements can mask the blood picture. This is illustrated in Fig. 8.53. Removal of ad-enosyl cobalamin eliminates the regeneration of tetrahydrofolate during the methylation of homocysteine to methionine. Folic acid supplements provide a fresh source of tetrahydrofolate coenzymes. DNA synthesis can continue and new erythrocytes form. Excess folic acid also may compete for the available vitamin, further exacerbating vitamin deficiency. [Pg.415]

Structure of the cobalamin family of compounds. A through D are the four rings in the corrinoid ring system. The B ring is important for cobalamin binding to intrinsic factor. If R = -CN, the molecule is cyanocobalamin (vitamin B12) if R = 5 -deoxyadenosine, the molecule is adenosylcobalamin if R = -CH3, the molecule is methylcobalamin. Arrows pointing toward the cobalt ion represent coordinate-covalent bonds. [Pg.918]

Vitamin Bn can be deficient due to a lack of intrinsic factor, which is a glycoprotein secreted by gastric parietal cells. A lack of intrinsic factor or a dietary deficiency of cobalamin can cause pernicious anemia and neuropsychiatric symptoms. The only known treatment lor intrinsic factor deficiency (vitamin Bn deficiency) is intramuscular injection of cyanocobalamin throughout the patient s life. [Pg.268]

After the stomach s acidic environment facilitates the breakdown of vitamin B12 bound to food, the vitamin B12 binds to the intrinsic factor released by the stomach s parietal cells. The secretion of intrinsic factor generally corresponds to the release of hydrochloric acid and serves as a cell-directed carrier protein similar to transferrin for iron. This complex, resistant to degradation, forms in the duodenum and allows for subsequent absorption of vitamin B12 in the terminal ileum. The cobalamin-intrinsic factor complex is taken up into the ileal mucosal cell, the intrinsic factor is discarded, and the cobalamin is transferred to transcobalamin It, which serves as a transport protein. This complex is secreted into the circulation and is taken up by the fiver, bone marrow, and other cells. Transcobalamin 11 has a short half-fife of 1 hour and is rapidly cleared from the blood. Consequently, most circulating cobalamin is bound to serum haptocorrins (formerly transcobalamin I and transcobalamin IB) whose function is unknown. However, it should be noted that an alternate pathway for vitamin B12 absorption independent of intrinsic factor or an intact ter-... [Pg.1819]

Cobalamin (vitamin Bj ) deficiency Inadequate uptake of cobalamin from the diet often due to lack of intrinsic factor an intestinal transport protein or less often due to unaugmented vegetarian diet that strictly avoids meat or meat products, the source of dietary cobalamin. [Pg.384]

Figure 42-2. Absorption, transport and storage of vitamin Bj. IF = intrinsic factor, a glycoprotein secreted by gastric parietal cells TC = transcobalamins, blood proteins that carry cobalamin to the Uver. (Reproduced, with permission, from D.B. Marks, et al. Basic Medical Biochemistry A Clinical Approach. Philadelphia Lippincott Williams Wilkins, 1996 619.)... Figure 42-2. Absorption, transport and storage of vitamin Bj. IF = intrinsic factor, a glycoprotein secreted by gastric parietal cells TC = transcobalamins, blood proteins that carry cobalamin to the Uver. (Reproduced, with permission, from D.B. Marks, et al. Basic Medical Biochemistry A Clinical Approach. Philadelphia Lippincott Williams Wilkins, 1996 619.)...
D. Cobalamin is transported in the blood by transcobalamins. Cyanocobalamin, the pharmacologic preparation of cobalamin available in vitamin pills, is an active as is. Cobalamin is not active with an iron cofactor. The intrinsic factor is produced by parietal cells in the stomach. Cobalamin must be reduced to the Co+ state for activity. [Pg.390]


See other pages where Cobalamin vitamin intrinsic factor is mentioned: [Pg.210]    [Pg.1293]    [Pg.337]    [Pg.155]    [Pg.508]    [Pg.375]    [Pg.766]    [Pg.33]    [Pg.134]    [Pg.306]    [Pg.306]    [Pg.1293]    [Pg.314]    [Pg.314]    [Pg.48]    [Pg.522]    [Pg.522]    [Pg.766]    [Pg.314]    [Pg.413]    [Pg.133]    [Pg.56]    [Pg.918]    [Pg.921]    [Pg.1819]    [Pg.1820]   
See also in sourсe #XX -- [ Pg.477 , Pg.491 ]




SEARCH



Cobalamin (vitamin

Cobalamine

Cobalamines

Cobalamins

Intrinsic factor

Vitamin Intrinsic factor

© 2024 chempedia.info