Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Classical chaos, quantum mechanics nonlinear systems

Abstract. The vast majority of the literature dealing with quantum dynamics is concerned with linear evolution of the wave function or the density matrix. A complete dynamical description requires a full understanding of the evolution of measured quantum systems, necessary to explain actual experimental results. The dynamics of such systems is intrinsically nonlinear even at the level of distribution functions, both classically as well as quantum mechanically. Aside from being physically more complete, this treatment reveals the existence of dynamical regimes, such as chaos, that have no counterpart in the linear case. Here, we present a short introductory review of some of these aspects, with a few illustrative results and examples. [Pg.52]

The notion of chaos is interwoven with the discussion of time evolution, which we do not pursue in this volume. It is worthwhile, however, to note that it is, by now, well understood that a quantum-mechanical system with a finite Hamiltonian matrix cannot satisfy many of the purely mathematical characterizations of chaos. Equally, however, over long periods of time such systems can manifest many of the qualitative features that one associates with classically chaotic systems. It is not our intention to follow this most interesting theme. Instead we seek a more modest aim, namely, to forge a link between the elementary notions of classical nonlinear dynamics and the algebraic approach. This turns out to be possible using the action-angle variables of classical mechanics. In this section we consider only the nonlinear dynamics aspects. We complete the bridge in Chapter 7. [Pg.67]

Ray Kapral came to Toronto from the United States in 1969. His research interests center on theories of rate processes both in systems close to equilibrium, where the goal is the development of a microscopic theory of condensed phase reaction rates,89 and in systems far from chemical equilibrium, where descriptions of the complex spatial and temporal reactive dynamics that these systems exhibit have been developed.90 He and his collaborators have carried out research on the dynamics of phase transitions and critical phenomena, the dynamics of colloidal suspensions, the kinetic theory of chemical reactions in liquids, nonequilibrium statistical mechanics of liquids and mode coupling theory, mechanisms for the onset of chaos in nonlinear dynamical systems, the stochastic theory of chemical rate processes, studies of pattern formation in chemically reacting systems, and the development of molecular dynamics simulation methods for activated chemical rate processes. His recent research activities center on the theory of quantum and classical rate processes in the condensed phase91 and in clusters, and studies of chemical waves and patterns in reacting systems at both the macroscopic and mesoscopic levels. [Pg.248]


See other pages where Classical chaos, quantum mechanics nonlinear systems is mentioned: [Pg.410]    [Pg.249]    [Pg.144]    [Pg.1]    [Pg.5]    [Pg.245]    [Pg.261]    [Pg.2]   
See also in sourсe #XX -- [ Pg.235 , Pg.236 , Pg.237 , Pg.238 , Pg.239 , Pg.240 , Pg.241 , Pg.242 , Pg.243 , Pg.244 , Pg.245 , Pg.246 ]




SEARCH



Chaos

Chaos classical

Classical chaos, quantum mechanics

Classical mechanical

Classical mechanics

Mechanical system

Mechanism system

Nonlinear chaos

Nonlinear mechanics

Nonlinear system

Nonlinear system chaos

Quantum chaos systems

Quantum mechanics systems

Quantum systems

System classical

© 2024 chempedia.info