Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Claisen condensation kinetic enolates

Detailed investigations indicate that the enolization process (LDA, THF) affords enolates 37 and 38 with at/east 97% (Z)-stereoselection. Related observations have recently been reported on the stereoselective enolization of dialkylthioamides (38). In this latter study, the Ireland-Claisen strategy (34) was employed to assign enolate geometry. Table 10 summarizes the enolization stereo selection that has been observed for both esters and amides with LDA. Complementary kinetic enolization ratios for ketonic substrates are included in Table 7. Recent studies on the role of base structure and solvent are now beginning to appear in the literature (39,40), and the Ireland enolization model for lithium amide bases has been widely accepted, A tabular survey of the influence of the ester moiety (ORj) on a range of aldol condensations via the lithium enolates is provided in Table 11 (eq. [24]). Enolate ratios for some of the condensations illustrated may be found in Table 10. It is apparent from these data that ( )-enolates derived from alkyl propionates (Rj = CH3, t-C4H9) exhibit low aldol stereoselectivity. In contrast, the enolates derived from alkoxyalkyl esters (Rj = CHjOR ) exhibit 10 1 threo diastereo-... [Pg.28]

As with ketone enolate anions (see 16-34), the use of amide bases under kinetic control conditions (strong base with a weak conjugate acid, aprotic solvents, low temperatures), allows the mixed Claisen condensation to proceed. Self-condensation of the lithium enolate with the parent ester is a problem when LDA is used as a base, ° but this is minimized with LICA (lithium isopropylcyclohexyl amide).Note that solvent-free Claisen condensation reactions have been reported. ° ... [Pg.1453]

Enolate anions react as nucleophiles. They give nucleophilic acyl substitution reactions with acid derivatives. The condensation reaction of one ester with another is called a Claisen condensation and it generates a P-keto ester. A mixed Claisen condensation under thermodynamic conditions leads to a mixture of products, but kinetic control conditions can give a single product. [Pg.1122]

For the condensation reaction of 60, 66, and 71, the thermodynamic reaction conditions constitute the traditional method of doing a Claisen condensation. This reaction may be modified to use kinetic control conditions using LDA as a base and THF as the solvent. An example is the reaction of 74 with LDA to form the ester enolate. Under these kinetic control conditions, assume that is large and that the reaction will give primarily the enolate anion such that... [Pg.1148]

Once an ester enolate is generated, it can react with another ester in a Claisen condensation however, it may also react with the carbonyl of an aldehyde or ketone. The ester enolate anion is a nucleophile and it reacts with an aldehyde or ketone via acyl addition. Kinetic control conditions are the most suitable for this reaction in order to minimize Claisen condensation of the ester with itself (self-condensation). If ester 74 (ethyl propanoate, in green in the illustration) is treated first with LDA and then with butanal (21, in violet), for example, the initial acyl addition product is 78. The new carbon-carbon bond is marked in blue and treatment with dilute aqueous acid converts the alkoxide to an alcohol in the final product of this sequence, 79. Compound 79 is a P-hydroxy ester, which is the usual product when an ester enolate reacts with an aldehyde or a ketone. Ester enolate anions react with ketones in the same way that they react with aldehydes. [Pg.1149]

An ester enolate is formed by reaction with a strong base, and the resulting enolate anion can condense with an aldehyde, a ketone, or another ester. Ester enolates react with aldehydes or ketones to form p-hydroxy esters. Aldehyde or ketone enolate anions react with esters to form p-hydroxy esters, 1,3-diketones, or p-keto aldehydes 56,57,84,99,100,102,108,110,114,115. Enolate anions react as nucleophiles. They give nucleophilic acyl substitution reactions with acid derivatives. The condensation reaction of one ester with another is called a Claisen condensation and it generates a P-keto ester. A mixed Claisen condensation under thermodynamic conditions leads to a mixture of products, but kinetic control conditions can give a single product 52, 53, 54, 55, 59, 68, 69,98,99,101,125. [Pg.1182]


See other pages where Claisen condensation kinetic enolates is mentioned: [Pg.191]    [Pg.222]    [Pg.132]    [Pg.394]    [Pg.721]    [Pg.864]    [Pg.1148]    [Pg.1149]    [Pg.94]    [Pg.875]    [Pg.214]   
See also in sourсe #XX -- [ Pg.986 , Pg.1008 ]




SEARCH



Claisen condensation

Enolate condensation

Enolates condensation

Enolates kinetic

Enolates kinetic enolate

Enols Claisen condensation

Kinetic enolate

© 2024 chempedia.info