Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromatographic separations elution development

Development of the Chromatogram. The term development describes the process of performing a chromatographic separation. There are several ways in which separation may be made to occur, eg, frontal, displacement, and elution chromatography. Frontal chromatography uses a large quantity of sample and is usually unsuited to analytical procedures. In displacement and elution chromatography, much smaller amounts of material are used. [Pg.105]

A chromatographic separation can be developed in three ways, by displacement development, by frontal analysis, and by elution development, the last being almost universally used in all analytical chromatography. Nevertheless, for the sake of completeness, and because in preparative chromatography (under certain conditions of mass overload) displacement effects occur to varying extents, all three development processes will be described. [Pg.7]

This type of chromatographic development will only be briefly described as it is rarely used and probably is of academic interest only. This method of development can only be effectively employed in a column distribution system. The sample is fed continuously onto the column, usually as a dilute solution in the mobile phase. This is in contrast to displacement development and elution development, where discrete samples are placed on the system and the separation is subsequently processed. Frontal analysis only separates part of the first compound in a relatively pure state, each subsequent component being mixed with those previously eluted. Consider a three component mixture, containing solutes (A), (B) and (C) as a dilute solution in the mobile phase that is fed continuously onto a column. The first component to elute, (A), will be that solute held least strongly in the stationary phase. Then the... [Pg.8]

Elution development is by far the most common method of processing a chromatographic separation and is used in all types of chromatography. Elution development is best described as a series of absorption-extraction processes which are continuous from the time the sample is injected into the distribution system until the time the solutes exit from it. The elution process is depicted in Figure 1. [Pg.9]

In a chromatographic separation, the individual components of a mixture are moved apart in the column due to their different affinities for the stationary phase and, as their dispersion is contained by appropriate system design, the individual solutes can be eluted discretely and resolution is achieved. Chromatography theory has been developed over the last half century, but the two critical theories, the Plate Theory and the Rate Theory, were both well established by 1960. There have been many contributors to chromatography theory over the intervening years but, with the... [Pg.16]

It is important for the analyst to be able to select the best stationary phase to use for a particular chromatographic analysis. Silica gel can be used in two modes of chromatographic separations as a stationary phase in normal elution development or as a stationary phase in exclusion chromatography. [Pg.69]

Compared to hydrocarbonaceous silica RPC sorbents, not as much commitment has been made to the development of bonded, polar-phase sorbents suitable for the high-performance chromatographic separation of peptides. Due to polar, notably hydrogen bonding, interactions between the peptide and the hydrophilic surface of the sorbent useful selectivity effects can, however, be achieved. In fact, at least two types of separation mechanisms can be identified with bonded polar-phase sorbents. In the first mode, the peptides do not interact per se with the bonded polar-phase sorbent but, rather, are separated on the basis of their ability to permeate into the pores and elute in order of their hydrodynamic volume. In this mode, peptides are separated by steric exclusion effects, with the retention (in terms of elution volume, Ve) of a partial retained peptide, Pb described by the following relationships ... [Pg.603]

A sensitive reverse-phase HPLC method has been developed for the analysis of etodolac in tablet formulation [22]. The chromatographic separation was achieved using a reverse-phase Cu column, having dimensions of 3.3 cm x 0.46 cm i.d. (3 pm particles) and which was maintained at 30°C. The mobile phase consisted of pH 6.0 phosphate buffer / methanol (60 40 v/v), and was eluted at 1 mL/min. Analyte detection was effected on the basis of UV detection at 230 nm. Diazepam was used as an internal standard. The sample preparation entailed grinding the etodolac tablets, followed by extraction with methanol (using sonication). A retention time of 1.46 min was obtained for etodolac under these conditions, and the method was found to be linear, precise, and accurate over the concentration range of 0.01 to 0.1 mg/mL. [Pg.132]


See other pages where Chromatographic separations elution development is mentioned: [Pg.388]    [Pg.294]    [Pg.548]    [Pg.5]    [Pg.4]    [Pg.174]    [Pg.452]    [Pg.409]    [Pg.264]    [Pg.347]    [Pg.155]    [Pg.369]    [Pg.60]    [Pg.61]    [Pg.363]    [Pg.165]    [Pg.366]    [Pg.293]    [Pg.230]    [Pg.393]    [Pg.552]    [Pg.642]    [Pg.667]    [Pg.547]    [Pg.554]    [Pg.32]    [Pg.678]    [Pg.252]    [Pg.9]    [Pg.76]    [Pg.158]    [Pg.116]    [Pg.25]    [Pg.96]    [Pg.12]    [Pg.629]    [Pg.37]    [Pg.98]    [Pg.103]    [Pg.160]    [Pg.219]    [Pg.181]    [Pg.183]   
See also in sourсe #XX -- [ Pg.182 , Pg.481 ]




SEARCH



Chromatographic elution

Chromatographic separation, elution

Development chromatographic

Development elution

Separator Developments

© 2024 chempedia.info