Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorite clay occurrence

Aluminum chlorite, (Al,Fe)4(Si,Al)402Q(0H)g, in which a gibbsitelike interlayer proxies in part for the bmcitelike interlayer, is being discovered in increasing occurrences and abundance (11,141). Chloritelike stmctures have been synthesi2ed by precipitation of Mg and Al between montmorillonite sheets (143). Cookite [1302-92-7], an aluminous chlorite containing lithium, has been found in high alumina refractory clays and bauxite [1318-16-7] (139). [Pg.199]

The dominant clay mineral at high latitudes is chlorite. In addition to ice rafting, lithogenous materials are transported in the polar oceans by rivers and winds. Polar seas are also characterized by diatomaceous oozes due to the occurrence of upwelling supported by divergence at 60°N and 60°S. [Pg.520]

Silicate minerals that usually occur as spherulitic aggregates of fibers have formed as a result of the alteration of the many minerals subsumed within the category of biopyriboles. Alteration of the micas under hydrothermal conditions produces compositional variants on recrystallization such as hydrous muscovite. Some of these samples have been labeled asbestiform, probably because they are found in veins that criss-cross rock masses. Fibrous micaceous minerals also occur as discrete disseminated particles, although few detailed analyses of crystallites from the disperse occurrences have been made. Fibrous mica found in veins usually grades (composition-ally) into members of the serpentine mineral group, the clays or the chlorites. [Pg.57]

In zones of hydrothermal alteration it is apparent that the formation of dioctahedral montmorillonites is limited by temperature. They almost never occur in the innermost zone of alteration, typically that of sericitization (hydro-mica or illite), but are the most frequent phase in the argillic-prophylitic zones which succeed one another outward from the zone where the hydrothermal fluid is introduced in the rock. Typically, the fully expandable mineral is preceded by a mixed layered phase (Schoen and White, 1965 Lowell and Guilbert, 1970 Fournier, 1965 Tomita, et al., 1969 Sudo, 1963 Meyer and Hemley, 1959 Bundy and Murray, 1959 Bonorino, 1959). However, temperature is possibly not the only control of expandable clay mineral occurrence, the composition of the solutions and the rock upon which they act might also be important. It is possible that high magnesium concentrations could form chlorite, for example, instead of expandable minerals. [Pg.70]

The stability conditions of corrensite then cover the low grade clay mineral facies (near 100°C) and extend well into the calcium zeolite-prehnite, muscovite-chlorite facies. In pelitic rocks the upper limit will be somewhat lower near the illite-chlorite zone. It is evident that composition of a rock governs the occurrence of corrensite. It can be... [Pg.115]

Pyrite averages 0.2 vol%, and only in a few samples forms up to 1.3 vol%. It shows two occurrence habits (i) fine crystals (< 2. im) or framboids scattered in kaolinized or chloritized detrital clays and micas, or engulfed by coarse carbonate cements (Fig. 15E) and (ii) coarsely crystalline (up to 200 pm across), intergranular replacive cement. [Pg.73]

A zonal distribution of clay minerals occurs in the East Hachimantai thermal area, characterized by smectite - illite/smectite - illite/chlorite, with the latter tending to occur in the vicinity of hot upflow zones. The smectite is characteristically Ca-smectite. The occurrence of Ca-bearing zeolite minerals, such as laumontite and wairakite correspond to the presence of hot hydrothermal fluids near in the center of the geothermal resource. In contrast, Na-smectite and Na-zeolite (e.g. clinoptilolite - mordenite - analcime) in marine sediments and pyroclastic sequences tend to envelope the main thermal area. Inoue et al. (2001) and Hara et al. (2001) have described the style and distribution of alteration in the Hachimantai area. The Na-enriched alteration zones contain higher Na concentrations than... [Pg.655]

Weed, S. B., and L. A. Nelson, 1962. Occurrence of chlorite-like intergrade clay minerals in coastal plain, piedmont and mountain soils of North Carolina. Proc. Soil Sci. Soc. Am. 26 393-398. [Pg.96]

The development of vermiculite minerals in soils at the expense of micas is now well established as a common phenomenon, more particularly by the work of Jackson and his collaborators e.g., Jackson et al. [1952], Schmehl and Jackson [1956], Jackson [1959,1963], Brown and Jackson [1958]) as well as by others e.g., Fieldes and Swindale [1954], Rich [1958], Cook and Rich [1962], Millot and Camez [1963], Nelson [1963]). In spite of the frequent occurrence of dioctahedral clay vermiculites in soils, dioctahedral clay micas, in general, appear to resist decomposition better than their trioctahedral counterparts and, where direct comparison is possible, the dioctahedral type may remain unaffected, whereas the trioctahedral mica in the same profile is almost completely altered (Mitchell [1955]). Vermiculitelike minerals, however, may also develop in soils by other routes, for example, from montmorillonite (Bundy and Murray [1959], Jackson [1963]) or from chlorite (Droste and Tharin [1958], Brown and Jackson [1958], Droste et al. [1962], Millot and Camez [1963]). Such alterations are reversible, and they depend on a chemical equilibrium between the mineral and the soil solution. Hence clay chlorites, illites, and montmorillonites may develop from clay vermiculites in an appropriate environment, and intermediate types are common. The alteration of clay vermiculites to kaolinite in podzols has also been proposed (Walker [1950], Brown [1953], Jackson et al. [1954], McAleese and Mitchell [1958a]). [Pg.176]


See other pages where Chlorite clay occurrence is mentioned: [Pg.199]    [Pg.252]    [Pg.183]    [Pg.279]    [Pg.3775]    [Pg.158]    [Pg.422]    [Pg.276]    [Pg.362]    [Pg.289]    [Pg.77]    [Pg.228]    [Pg.239]    [Pg.279]   
See also in sourсe #XX -- [ Pg.91 , Pg.96 , Pg.97 ]




SEARCH



Chlorite

Chlorite occurrence

© 2024 chempedia.info