Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloride anion, cobaltocenium based receptors

We recently incorporated the ruthenium(II) bipyridyl moiety into acyclic, macrocyclic, and lower rim caUx[4Jarene structural frameworks to produce a new class of anion receptor capable of optical and electrochemical sensing (226, 253. 254). Stability constant determinations in DMSO using H NMR titration techniques demonstrated that these acyclic receptors (131 and 132) form strong complexes with chloride and dihydrogen phosphate anions (stronger than with analogous monopositive cobaltocenium based receptors). The ruthenium ion is dipositive and hence the electrostatic interactions are particularly favorable. The 4,4 -substituted ruthenium bipyridyls were observed to bind anions more... [Pg.76]

A macrocyclic receptor (100) has also recently been prepared and its crystal structure was elucidated (220). In comparison with its acyclic analogue 101, an anion macrocyclic effect was observed, the stability constants for chloride complex formation [in DMSO] being K = 250 M (100) and K = 20 M (101). Receptor 102 was shown to act as a switchable cobaltocenium based chloridebinding host (221). The free receptor binds chloride anions, but on the addition of potassium ions, the binding is switched off. This effect is probably due to the ability of the potassium ion to form a sandwich complex with the two crown ether substituents, sterically hindering the anion-binding site. [Pg.60]

Another class of mixed-metal anion receptors has been investigated which possess redox reporter groups based on two different metal complexes. This enables the quahtative comparison of their comparative anion-sensing abih-ties. Macrocycles 35 and 36 combine the Ru (bpy)3 moiety with a bridging ferrocene or cobaltocenium imit [29]. Electrochemical experiments in acetonitrile solution revealed that the Ru VRu redox potential was insensitive to anion binding, whereas the ferrocene/ferrocenium (in 35) and cobal-tocene/cobaltocenium (in 36) redox couples were shifted cathodically (by 60 mV and 110 mV respectively with chloride). However, the first reduction of Ru°(bpy)3, a Hgand-centred process based on the amide substituted bipyridyl, was also found to imdergo an anion induced cathodic shift (40 mV and 90 mV with chloride for 35 and 36, respectively). [Pg.56]

Studies of synthetic porphyrin-based anion receptors should form the basis for more effective sensors. Metallocene-substituted porphyrins examined by Beer and coworkers have proven successful in the solution-phase binding of ions such as chloride, bromide and nitrate." The cobaltocenium-substituted and ferrocene-substituted porphyrins (Figure 134) bind ions in solution, as shown by H NMR and electrochemical studies. The latter measurements reveal that the porphyrin and ferrocene redox... [Pg.122]


See other pages where Chloride anion, cobaltocenium based receptors is mentioned: [Pg.48]    [Pg.54]    [Pg.64]    [Pg.69]   
See also in sourсe #XX -- [ Pg.60 ]




SEARCH



Anions receptors

Chloride anion

Chloride anion, cobaltocenium based receptors C5Me5)

Cobaltocenium anion receptors

Cobaltocenium based receptors

Cobaltocenium receptors

Cobaltocenium-based anion receptors

Receptor anionic

© 2024 chempedia.info