Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chirality of amines

In recent years the solid-phase hydrosilylation reaction was successfully employed for synthesis of hydrolytically stable surface chemical compounds with Si-C bonds. Of special interest is application of this method for attachment of functional olefins, in particular of acrolein and some chiral ligands. Such matrices can be used for subsequent immobilization of a wide range of amine-containing organic reagents and in chiral chromatography. [Pg.248]

Reaction of 2-[A -(rra -crotyl)-A -benzylamino]-3-formyl-4/f-pyrido[l,2-n]pyrimidin-4-one (269) with chiral primary amines 270 and 271 gave mixtures of diastereoisomers of tetracyclic compounds 273 and tricyclic 275 (96T131]]). The chiral centers in 272 and 274 did not provide any stereocontrol for the formation of diastereomers 273 and 275, respectively. [Pg.228]

Kobayashi et al. have reported the use of a chiral lanthanide(III) catalyst for the Diels-Alder reaction [51] (Scheme 1.63, Table 1.26). Catalyst 33 was prepared from bi-naphthol, lanthanide triflate, and ds-l,2,6-trimethylpiperidine (Scheme 1.62). When the chiral catalyst prepared from ytterbium triflate (Yb(OTf)3) and the lithium or sodium salt of binaphthol was used, less than 10% ee was obtained, so the amine exerts a great effect on the enantioselectivity. After extensive screening of amines, ds-1,2,6-... [Pg.40]

In all the reactions described so far a chiral Lewis acid has been employed to promote the Diels-Alder reaction, but recently a completely different methodology for the asymmetric Diels-Alder reaction has been published. MacMillan and coworkers reported that the chiral secondary amine 40 catalyzes the Diels-Alder reaction between a,/ -unsaturated aldehydes and a variety of dienes [59]. The reaction mechanism is shown in Scheme 1.73. An a,/ -unsaturated aldehyde reacts with the chiral amine 40 to give an iminium ion that is sufficiently activated to engage a diene reaction partner. Diels-Alder reaction leads to a new iminium ion, which upon hydrolysis af-... [Pg.46]

The assumed transition state of this reaction is shown in Scheme 5.3. Yb(OTf)3, (J )-(-h)-BINOL, and DBU form a complex with two hydrogen bonds, and the axial chirality of (J )-(-h)-BINOL is transferred via the hydrogen bonds to the amine parts. The additive would interact with the phenolic hydrogen of the imine, which is fixed by bidentate coordination to Yb(III). Because the top face of the imine is shielded by the amine, the dienophiles approach from the bottom face to achieve high levels of selectivity. [Pg.191]

Reductive alkylation with chiral substrates may afford new chiral centers. The reaction has been of interest for the preparation of optically active amino acids where the chirality of the amine function is induced in the prochiral carbonyl moiety 34,35). The degree of induced asymmetry is influenced by substrate, solvent, and temperature 26,27,28,29,48,51,65). Asymmetry also has been obtained by reduction of prochiral imines, using a chiral catalyst 44). Prediction of the major configurational isomer arising from a reductive alkylation can be made usually by the assumption that amine formation comes via an imine, not the hydroxyamino addition compound, and that the catalyst approaches the least hindered side (57). [Pg.91]

Phosphine(s), chirality of, 314 Phosphite, DNA synthesis and, 1115 oxidation of, 1116 Phospholipid, 1066-1067 classification of, 1066 Phosphopantetheine, coenzyme A from. 817 structure of, 1127 Phosphoramidite, DNA synthesis and, 1115 Phosphoranc, 720 Phosphoric acid, pKa of, 51 Phosphoric acid anhydride, 1127 Phosphorus, hybridization of, 20 Phosphorus oxychloride, alcohol dehydration with. 620-622 Phosphorus tribromide, reaction with alcohols. 344. 618 Photochemical reaction, 1181 Photolithography, 505-506 resists for, 505-506 Photon, 419 energy- of. 420 Photosynthesis, 973-974 Phthalic acid, structure of, 753 Phthalimide, Gabriel amine synthesis and, 929... [Pg.1311]

A very interesting approach to optically active sulphoxides, based on a kinetic resolution in a Pummerer-type reaction with optically active a-phenylbutyric acid chloride 269 in the presence of /V,A -dimethyIaniline, was reported by Juge and Kagan332 (equation 149). In contrast to the asymmetric reductions discussed above, this procedure afforded the recovered sulphoxides in optical yields up to 70%. Chiral a, /1-unsaturated sulphoxides 270 were prepared via a kinetic resolution elaborated by Marchese and coworkers333. They found that elimination of HX from racemic /i-halogenosulphoxides 271 in the presence of chiral tertiary amines takes place in an asymmetric way leading to both sulphoxides 270 and 271, which are optically active (optical yields up to 20%) with opposite configurations at sulphur (equation 150). [Pg.296]

Subsequently Turner and coworkers were able to show that the Asn336Ser variant possessed broad substrate specificity, with the ability to oxidize a wide range of chiral amines of interest [19]. They also discovered a second mutation, Ile246Met, which conferred enhanced activity toward chiral secondary amines as exemplified by the deracemization of racemic 1-methyltetrahydroisoquinoline (MTQ) (9) (Figure 5.9)[20j. [Pg.120]

Over the past years, interest in the preparation of chiral amines and amides by enzymatic ammonolysis or aminolysis reactions [4] has greatly increased for academic and industrial sectors. The role that the enzymatic acylation of amines or ammonia plays for the preparation of some pharmaceuticals is noteworthy [5]. [Pg.171]

Kinetic resolution of racemic allylic acetates has been accomplished via asymmetric dihydroxylation (p. 1051), and 2-oxoimidazolidine-4-carboxy-lates have been developed as new chiral auxiliaries for the kinetic resolution of amines. Reactions catalyzed by enzymes can be utilized for this kind of resolution. ... [Pg.154]

The exchange of the chiral phenylethyl amine against an optically active amino acid fragment 269 allowed the synthesis of conformationally restrained dipeptidyl lactams 271 and 272 including the so called Freidinger lactams as... [Pg.168]

Anderson CE, Donde Y, Douglas CJ, Overman LE (2005) Catalytic asymmetric synthesis of chiral allylic amines. Evaluation of ferrocenyloxazoline palladacycle catalysts and imidate motifs. J Org Chem 70 648-657... [Pg.173]

Overman LE, Owen CE, Pavan MM, Richards CJ (2003) Catalytic asymmetric rearrangement of allylic N-aryl trifluoroacetimidates. A useful method for transforming prochiral allylic alcohols to chiral allylic amines. Org Lett 5 1809-1812... [Pg.173]

Hodous BL, Fu GC (2002) Enantioselective addition of amines to ketenes catalyzed by a planar-chiral derivative of PPY possible intervention of chiral Bronsted-acid catalysis. J Am Chem Soc 124 10006-10007... [Pg.174]

The strategy for the asymmetric reductive acylation of ketones was extended to ketoximes (Scheme 9). The asymmetric reactions of ketoximes were performed with CALB and Pd/C in the presence of hydrogen, diisopropylethylamine, and ethyl acetate in toluene at 60° C for 5 days (Table 20) In comparison to the direct DKR of amines, the yields of chiral amides increased significantly. Diisopropylethylamine was responsible for the increase in yields. However, the major factor would be the slow generation of amines, which maintains the amine concentration low enough to suppress side reactions including the reductive aminafion. Disappointingly, this process is limited to benzylic amines. Additionally, low turnover frequencies also need to be overcome. [Pg.76]

In another report, aspects for automating preparative chemistry are described [130]. A comprehensive description of the Ugi reaction is given in [132] and the vision of a micro multi-component reaction as automated parallel micro-channel synthesis is sketched. An interesting point is to convert aldehydes, chiral primary amines, carboxylic adds and isocyanates into corresponding a-amino acids and peptides (U-4CR). [Pg.511]

The first reductive kinetic resolution of racemic sulphoxides was reported by Balenovic and Bregant. They found that L-cysteine reacted with racemic sulphoxides to produce a mixture of L-cystine, sulphide and non-reduced optically active starting sulphoxide (equation 147). Mikojajczyk and Para reported that the reaction of optically active phosphonothioic acid 268 with racemic sulphoxides used in a 1 2 ratio gave the non-reduced optically active sulphoxides, however, with a low optical purity (equation 148). It is interesting to note that a clear relationship was found between the chirality of the reducing P-thioacid 268 and the recovered sulphoxide. Partial asymmetric reduction of racemic sulphoxides also occurs when a complex of LiAlH with chiral alcohols , as well as a mixture of formamidine sulphinic acid with chiral amines, are used as chiral reducing systems. ... [Pg.296]

The fourth chapter gives a comprehensive review about catalyzed hydroamina-tions of carbon carbon multiple bond systems from the beginning of this century to the state-of-the-art today. As was mentioned above, the direct - and whenever possible stereoselective - addition of amines to unsaturated hydrocarbons is one of the shortest routes to produce (chiral) amines. Provided that a catalyst of sufficient activity and stabihty can be found, this heterofunctionalization reaction could compete with classical substitution chemistry and is of high industrial interest. As the authors J. J. Bmnet and D. Neibecker show in their contribution, almost any transition metal salt has been subjected to this reaction and numerous reaction conditions were tested. However, although considerable progress has been made and enantios-electivites of 95% could be reached, all catalytic systems known to date suffer from low activity (TOP < 500 h ) or/and low stability. The most effective systems are represented by some iridium phosphine or cyclopentadienyl samarium complexes. [Pg.289]


See other pages where Chirality of amines is mentioned: [Pg.5]    [Pg.674]    [Pg.364]    [Pg.56]    [Pg.999]    [Pg.1003]    [Pg.1003]    [Pg.264]    [Pg.757]    [Pg.5]    [Pg.674]    [Pg.364]    [Pg.56]    [Pg.999]    [Pg.1003]    [Pg.1003]    [Pg.264]    [Pg.757]    [Pg.265]    [Pg.178]    [Pg.41]    [Pg.285]    [Pg.217]    [Pg.55]    [Pg.350]    [Pg.76]    [Pg.907]    [Pg.296]    [Pg.94]    [Pg.109]    [Pg.172]    [Pg.340]    [Pg.163]    [Pg.161]    [Pg.278]    [Pg.176]    [Pg.739]   
See also in sourсe #XX -- [ Pg.342 ]

See also in sourсe #XX -- [ Pg.971 ]




SEARCH



Amines chirality

Chiral aminals

Chiral amines

© 2024 chempedia.info