Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral auxiliaries mandelate esters

R)- and (,S )-1.1,2-Triphenyl-l,2-ethancdiol which are reliable and useful chiral auxiliary groups (see Section 1.3.4.2.2.3.) also perform ami-sclcctive aldol additions with remarkable induced stereoselectivity72. The (/7)-diastercomer, readily available from (7 )-methyl mandelate (2-hy-droxy-2-phcnylaeetate) and phenylmagnesium bromide in a 71 % yield, is esterified to give the chiral propanoate which is converted into the O-silyl protected ester by deprotonation, silylation, and subsequent hydrolysis. When the protected ester is deprotonated with lithium cyclohexyliso-propylamide, transmetalated by the addition of dichloro(dicyclopentadienyl)zirconium, and finally reacted with aldehydes, predominantly twm -diastereomers 15 result. For different aldehydes, the ratio of 15 to the total amount of the syn-diastereomers is between 88 12 and 98 2 while the chemical yields are 71 -90%. Furthermore, high induced stereoselectivity is obtained the diastereomeric ratios of ami-15/anti-16 arc between 95 5 and >98 2. [Pg.484]

The highly ordered cyclic TS of the D-A reaction permits design of diastereo-or enantioselective reactions. (See Section 2.4 of Part A to review the principles of diastereoselectivity and enantioselectivity.) One way to achieve this is to install a chiral auxiliary.80 The cycloaddition proceeds to give two diastereomeric products that can be separated and purified. Because of the lower temperature required and the greater stereoselectivity observed in Lewis acid-catalyzed reactions, the best diastereoselectivity is observed in catalyzed reactions. Several chiral auxiliaries that are capable of high levels of diastereoselectivity have been developed. Chiral esters and amides of acrylic acid are particularly useful because the auxiliary can be recovered by hydrolysis of the purified adduct to give the enantiomerically pure carboxylic acid. Early examples involved acryloyl esters of chiral alcohols, including lactates and mandelates. Esters of the lactone of 2,4-dihydroxy-3,3-dimethylbutanoic acid (pantolactone) have also proven useful. [Pg.499]

Control over the absolute configuration in cyclohexenone photocycloadditions has been achieved by auxiliary-induced diastereoselectivity. In particular, esters related to compound 26, which are derived from a chiral alcohol but not from methanol, lend themselves as potential precursors, from which the chiral auxiliary can be effectively cleaved [42, 43]. In a recent study, the use of additives was advertised to increase the diastereomeric excess in these reactions [44], An intriguing auxiliary-induced approach was presented by Piva et al., who employed chiral 13-hydroxy-carboxylic adds as tethers to control both the regioselectivity and the diastereoselectivity of intramolecular [2 + 2]-photocycloaddition reactions [45]. In Scheme 6.14 the reaction of the (S)-mandelic acid derived substrate 38 is depicted, which led with very good stereocontrol almost exclusively to product 39a, with the other diastereoisomer 39b being formed only in minor quantities (39a/39b = 96/4). Other acids, such as (S)-lactic acid, performed equally well. The chiral tether could be cleaved under basic conditions to afford enantiomerically pure cydobutane lactones in good yields. [Pg.180]

A more efficient process is one in which the chiral auxiliary, although still used stoichiometrically, can be recovered and reused. A notable example of a second order chiral reagent is ester (204 equation 122). In this process, methyl mandelate is converted into chiral ester (204). After the aldol reaction, the product (205) is saponified and the chiral auxiliary may, in principle, be fully recovered and recycled. However, in practice, yields are never quantitative and the overall efficiency of auxiliary recovery is usually of the order of 50%. [Pg.232]

Ethyl mandelate was explored as a fu t generation chiral auxiliary because both enantiomers of this compound are readily available. Furthermore, esters are... [Pg.78]

One of the pervasive problems in asymmetric synthesis has been the development of stereoselective acetate ester aldol reactions. Although a number of chiral auxiliaries perform superbly well in diastereoselective propionate aldol additions, these have, with rare exceptions, been unsuccessful in the corresponding additions of unsubstituted acetate-derived enolates [19, 63, 64). Braun s disclosure of a stereoselective acetate aldol addition reaction with 103 was an important milestone in the development of the field (Scheme 4.11) [63, 65]. The diol auxiliary can easily be prepared from mandelic acid esterification of the secondary alcohol is obsei ved, without interference from the tertiary counterpart. Its use has been showcased in a number of syntheses [53]. The high yield and diastereoselectivity generally obtained with 103 were highlighted by investigators at Merck in the construction of the chiral lactone fragment that is common in a number of HMG-CoA reductase inhibitors, such as compactin (105) [66]. [Pg.112]

Esters have also been investigated as chiral controlling groups on the diene partner. Trost documented the use of dienes such as 110, incorporating a mandelic acid ester as the chiral auxiliary (Equation 9) [66]. Excellent face selectivity was observed in the Diels-Alder reaction between 110 and ju-glone (109), giving the product 111 with high diastereoinduction (>97 3) and in 98 % yield. [Pg.561]


See other pages where Chiral auxiliaries mandelate esters is mentioned: [Pg.34]    [Pg.672]    [Pg.298]    [Pg.24]    [Pg.25]    [Pg.287]    [Pg.276]    [Pg.12]    [Pg.155]    [Pg.441]   
See also in sourсe #XX -- [ Pg.501 ]




SEARCH



Chirality auxiliaries

Ester Auxiliaries

Esters chiral

Mandel

Mandelate

Mandelates

Mandelic esters

Mandell

© 2024 chempedia.info