Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemicals continued proline

It is well-known that catalytic amounts of aldehyde can induce racemization of a-amino acids through the reversible formation of Schiff bases.61 Combination of this technology with a classic resolution leads to an elegant asymmetric transformation of L-proline to D-proline (Scheme 6.8).62 63 When L-proline is heated with one equivalent of D-tartaric acid and a catalytic amount of n-butyraldehyde in butyric acid, it first racemizes as a result of the reversible formation of the proline-butyraldehyde Schiff base. The newly generated D-proline forms an insoluble salt with D-tartaric acid and precipitates out of the solution, whereas the soluble L-proline is continuously being racemized. The net effect is the continuous transformation of the soluble L-proline to the insoluble D-proline-D-tartaric acid complex, resulting in near-complete conversion. Treatment of the D-proline-D-tartaric acid complex with concentrated ammonia in methanol liberates the D-proline (16) (99% ee, with 80-90% overall yield from L-proline). This is a typical example of a dynamic resolution where L-proline is completely converted to D-proline with simultaneous in situ racemization. As far as the process is concerned, this is an ideal case because no extra step is required for recycle and racemization of the undesired enantiomer and a 100% chemical yield is achievable. The only drawback of this process is the use of stoichiometric amount of D-tartaric acid, which is the unnatural form of tartaric acid and is relatively expensive. Fortunately, more than 90% of the D-tartaric acid is recovered at the end of the process as the diammonium salt that can be recycled after conversion to the free acid.64... [Pg.83]

The chemical scheme for C-terminal sequencing is shown in Figure 2. The first step involves treatment of the peptide or protein sample with diisopropylethylamine in order to convert the C-terminal carboxylic acid into a carboxylate salt. Derivatization of the C-terminal amino acid to a thiohydantoin is accomplished with diphenylisothiocyanatidate (liquid phase) and pyridine (gas phase). The peptide is then extensively washed with ethyl acetate and acetonitrile to remove reaction by-products. The peptide is then treated briefly with gas phase trifluoroacetic acid, followed by water vapor in case the C-terminal residue is a proline (this treatment has no effect on residues which are not proline). The derivatized amino acid is then specifically cleaved with sodium or potassium trimethylsilanolate to generate a shortened peptide or protein which is ready for continued sequencing. In the case of a C-terminal proline which was already removed by water vapor, the silanolate treatment merely converts the C-terminal carboxylic acid group on the shortened peptide to a carboxylate. The thiohydantoin amino acid is then quantitated and identified by reverse-phase HPLC. [Pg.244]


See other pages where Chemicals continued proline is mentioned: [Pg.597]    [Pg.294]    [Pg.292]    [Pg.109]    [Pg.150]    [Pg.270]    [Pg.272]    [Pg.397]   
See also in sourсe #XX -- [ Pg.42 , Pg.52 ]




SEARCH



Chemical Continuous

© 2024 chempedia.info