Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactions amount-mass-number relationships

This balanced equation can be read as 4 iron atoms react with 3 oxygen molecules to produce 2 iron(III) oxide units. However, the coefficients can stand not only for the number of atoms or molecules (microscopic level) but they can also stand for the number of moles of reactants or products. So the equation can also be read as 4 mol of iron react with 3 mol of oxygen to produce 2 mol ofiron(III) oxide. In addition, if we know the number of moles, the number of grams or molecules may be calculated. This is stoichiometry, the calculation of the amount (mass, moles, particles) of one substance in the chemical equation from another. The coefficients in the balanced chemical equation define the mathematical relationship between the reactants and products and allow the conversion from moles of one chemical species in the reaction to another. [Pg.35]

In this chapter, you learned how to balance simple chemical equations by inspection. Then you examined the mass/mole/particle relationships. A mole has 6.022 x 1023 particles (Avogadro s number) and the mass of a substance expressed in grams. We can interpret the coefficients in the balanced chemical equation as a mole relationship as well as a particle one. Using these relationships, we can determine how much reactant is needed and how much product can be formed—the stoichiometry of the reaction. The limiting reactant is the one that is consumed completely it determines the amount of product formed. The percent yield gives an indication of the efficiency of the reaction. Mass data allows us to determine the percentage of each element in a compound and the empirical and molecular formulas. [Pg.44]

You can get the same kind of information from a balanced chemical equation. In Chapter 4, you learned how to classify chemical reactions and balance the chemical equations that describe them. In Chapters 5 and 6, you learned how chemists relate the number of particles in a substance to the amount of the substance in moles and grams. In this section, you will use your knowledge to interpret the information in a chemical equation, in terms of particles, moles, and mass. Try the following Express Lab to explore the molar relationships between products and reactants. [Pg.234]

Figure 3.8 Summary of the mass-mole-number relationships in a chemical reaction. The amount of one substance in a reaotion is related to that of any other. Quantities are expressed in terms of grams, moles, or number of entities (atoms, molecules, or formula units). Start at any box in the diagram (known) and move to any other box (unknown) by using the information on the arrows as conversion factors. As an example, if you know the mass (in g) of A and want to know the number of molecules of B, the path involves three calculation steps ... Figure 3.8 Summary of the mass-mole-number relationships in a chemical reaction. The amount of one substance in a reaotion is related to that of any other. Quantities are expressed in terms of grams, moles, or number of entities (atoms, molecules, or formula units). Start at any box in the diagram (known) and move to any other box (unknown) by using the information on the arrows as conversion factors. As an example, if you know the mass (in g) of A and want to know the number of molecules of B, the path involves three calculation steps ...
In this section we consider a fundamentally important question How much mass of a given reactant is required to produce a given amount of current Conversely, how much current is required to produce a certain amount of product Clearly, the fundamental relationships should be based on conservation of mass and charge. We cannot produce mass from an electrochemical reaction, only rearrange it, and a given amount of reactant can produce a fixed number of charged species, based on the balanced chemical reaction. Consider 1 mol... [Pg.43]


See other pages where Chemical reactions amount-mass-number relationships is mentioned: [Pg.1188]    [Pg.339]    [Pg.32]   
See also in sourсe #XX -- [ Pg.91 , Pg.92 ]




SEARCH



Chemical amount

Chemical reactions numbering

Mass number

Number Relationship

Number chemical reactions

Reaction number

Reaction relationship

Reactions numbering

© 2024 chempedia.info