Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical property calculator

During an experiment, a chemist may measure physical quantities such as mass, volume, and temperature. Usually the chemist seeks information that is related to the measured quantities but must be found by doing calculations. In later chapters we develop and use equations that relate measured physical quantities to important chemical properties. Calculations are an essential part of all of chemistry therefore, they play important roles in much of general chemistry. The physical property of density illustrates how to apply an equation to calculations. [Pg.38]

SciVision—provider of software for chemical property calculation, and to estimate... [Pg.389]

To obtain spatial autocorrelation molecular descriptors, function /(x,) is any physico-chemical property calculated for each atom of the molecule, such as atomic mass, polarizability, etc., and - local vertex invariants such as - vertex degree. Therefore, the molecule atoms represent the set of discrete points in space and the atomic property the function evaluated at those points. [Pg.17]

Ah initio methods are applicable to the widest variety of property calculations. Many typical organic molecules can now be modeled with ah initio methods, such as Flartree-Fock, density functional theory, and Moller Plesset perturbation theory. Organic molecule calculations are made easier by the fact that most organic molecules have singlet spin ground states. Organics are the systems for which sophisticated properties, such as NMR chemical shifts and nonlinear optical properties, can be calculated most accurately. [Pg.284]

PW91 (Perdew, Wang 1991) a gradient corrected DFT method QCI (quadratic conhguration interaction) a correlated ah initio method QMC (quantum Monte Carlo) an explicitly correlated ah initio method QM/MM a technique in which orbital-based calculations and molecular mechanics calculations are combined into one calculation QSAR (quantitative structure-activity relationship) a technique for computing chemical properties, particularly as applied to biological activity QSPR (quantitative structure-property relationship) a technique for computing chemical properties... [Pg.367]

Now that we know something about EDTA s chemical properties, we are ready to evaluate its utility as a titrant for the analysis of metal ions. To do so we need to know the shape of a complexometric EDTA titration curve. In Section 9B we saw that an acid-base titration curve shows the change in pH following the addition of titrant. The analogous result for a titration with EDTA shows the change in pM, where M is the metal ion, as a function of the volume of EDTA. In this section we learn how to calculate the titration curve. We then show how to quickly sketch the titration curve using a minimum number of calculations. [Pg.317]

Step 4 deals with physical and chemical properties of compounds and mixtures. Accurate physical and chemical properties ate essential to achieve accurate simulation results. Most simulators have a method of maintaining tables of these properties as well as computet routines for calculations for the properties by different methods. At times these features of simulators make them suitable or not suitable for a particular problem. The various simulators differ ia the number of compounds ia the data base number of methods for estimating unknown properties petroleum fractions characterized electrolyte properties handled biochemical materials present abiUty to handle polymers and other complex materials and the soflds, metals, and alloys handled. [Pg.73]

Enzymatic Catalysis. Enzymes are biological catalysts. They increase the rate of a chemical reaction without undergoing permanent change and without affecting the reaction equiUbrium. The thermodynamic approach to the study of a chemical reaction calculates the equiUbrium concentrations using the thermodynamic properties of the substrates and products. This approach gives no information about the rate at which the equiUbrium is reached. The kinetic approach is concerned with the reaction rates and the factors that determine these, eg, pH, temperature, and presence of a catalyst. Therefore, the kinetic approach is essentially an experimental investigation. [Pg.286]

It is of interest to consider at this point some of the specific molecules in Scheme 9.2 and compare their chemical properties with the calculated stabilization energies. Benzo-cyclobutadiene has been generated in a number of ways, including dehalogenation of... [Pg.534]

Engineering calculations predict emission rates without tlie use of emission factors. These calculations use basic science and engineering principles, chemical property data, and operating conditions to provide a detailed analysis of the emissions for a specific process. Tliis is a more sophisticated approach tluui emission factors, and is useful for evaluating various operational and control alteniatives. [Pg.312]

Each chapter focuses on a single topic, and includes explanations of the chemical properties or phenomena under consideration and the relevant computational procedures, one or two detailed examples of setting up such calculations and interpreting their results, and several exercises designed to both provide practice in the area and to introduce its more advanced aspects. Full solutions are provided for all... [Pg.314]

Molecular modeling itself can be simply described as the computer-assisted calculation, modulation, and visualization of realistic 3D-molecular structures and their physical-chemical properties using force fields/ molecular mechanics. [Pg.777]

Chemists also need to know the distribution of electric charge in a molecule, because that distribution affects its physical and chemical properties. To do so, they sometimes use an electrostatic potential surface (an elpot surface), in which the net electric potential is calculated at each point of the density isosurface and depicted by different colors, as in Fig. C.2f. A blue tint at a point indicates that the positive potential at that point due to the positively charged nuclei outweighs the negative potential due to the negatively charged electrons a red tint indicates the opposite. [Pg.49]

The German physicist Lothar Meyer observed a periodicity in the physical properties of the elements at about the same time as Mendeleev was working on their chemical properties. Some of Meyer s observations can be reproduced by examining the molar volume for the solid element as a function of atomic number. Calculate the molar volumes for the elements in Periods 2 and 3 from the densities of the elements found in Appendix 2D and the following solid densities (g-cuU ) nitrogen, 0.88 fluorine, 1.11 neon, 1.21. Plot your results as a function of atomic number and describe any variations that you observe. [Pg.178]

Fig. 16-4 pH sensitivity to SO4- and NH4. Model calculations of expected pH of cloud water or rainwater for cloud liquid water content of 0.5 g/m. 100 pptv SO2, 330 ppmv CO2, and NO3. The abscissa shows the assumed input of aerosol sulfate in fig/m and the ordinate shows the calculated equilibrium pH. Each line corresponds to the indicated amoimt of total NH3 + NH4 in imits of fig/m of cloudy air. Solid lines are at 278 K, dashed ones are at 298 K. The familiar shape of titration curves is evident, with a steep drop in pH as the anion concentration increases due to increased input of H2SO4. (From Charlson, R. J., C. H. Twohy and P. K. Quinn, Physical Influences of Altitude on the Chemical Properties of Clouds and of Water Deposited from the Atmosphere." NATO Advanced Research Workshop Acid Deposition Processes at High Elevation Sites, Sept. 1986. Edinburgh, Scotland.)... [Pg.427]

The next step would be to allow computers which can calculate chemical properties to interact automatically with computers which can search the chemical literature. This would enable the literature results to be extended to the precise systems of interest for a particular synthesis. If a new alcohol is being oxidised, then the effect of the surroundings could be calculated, while the experimental protocol could be taken from the paper. Thus, the literature results would guide the calculations. The calculations would also guide the literature searching, because the calculation may suggest a side reaction which could be checked in the literature. Literature precedent may be a more reliable guide than calculation as to which of several possible reactions is likely to work best. [Pg.55]


See other pages where Chemical property calculator is mentioned: [Pg.26]    [Pg.172]    [Pg.142]    [Pg.813]    [Pg.137]    [Pg.5]    [Pg.26]    [Pg.172]    [Pg.142]    [Pg.813]    [Pg.137]    [Pg.5]    [Pg.51]    [Pg.354]    [Pg.231]    [Pg.157]    [Pg.227]    [Pg.227]    [Pg.458]    [Pg.457]    [Pg.2]    [Pg.26]    [Pg.532]    [Pg.286]    [Pg.438]    [Pg.80]    [Pg.318]    [Pg.54]    [Pg.142]    [Pg.123]    [Pg.5]    [Pg.339]    [Pg.817]    [Pg.576]    [Pg.28]    [Pg.679]    [Pg.184]    [Pg.503]    [Pg.289]    [Pg.49]   
See also in sourсe #XX -- [ Pg.73 , Pg.101 , Pg.102 ]




SEARCH



Calculating properties of chemical bonding

Chemical property bonding calculations

Properties calculations

Property calculations/calculators

Theoretical methods chemical property bonding calculations

© 2024 chempedia.info