Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical properties, periodic table

The closet precursor to Mendeleev s table in both chronological and philosophical toms was developed by Julius Lothar Meyer, a German chemist, in 1864. Although Meyer stressed physical rather than chemical properties, his table bears remarkable similarity to the one that Mendeleev would develop five years later. For a number of reasons, Meyer s prominence in tlte history books never matched Mendeleev s. There was an untimely delay in the publication of his most elaborate periodic table, and, perliaps more important, Meyer—unlike Mendeleev—hesitated to make predictions about unknown elements. [Pg.116]

What is needed now (1913) is an answer to the question what is an element Up to this time elements had been characterized by their respective masses. But now different masses (isotopes) all correspond to the same element. As already noted, Mendeleev had assembled the elements into a table by writing down the elements in order of increasing mass and had found, by making the table two dimensional through the introduction of rows and columns, that he was able to construct the table so that elements in given columns had similar properties. The similarities included physical properties as well as chemical properties. The table was therefore called a periodic table (there was periodicity). However, Mendeleev noted immediately that, in order to make his table work , he needed to introduce blank spaces for missing elements. This was fine because it led to the prediction of new elements which were later actually found. However, there were also places in the table where he had to reverse the ordering demanded by the masses in order to obtain periodicity (e.g. Co and Ni). [Pg.14]

Just as there exists a periodic table for neutral atoms, one can in principle construct a table for any ionisation stage, by making use of binding energies rather than chemical properties. Such tables are similar, but not identical to those for neutral atoms. In particular, for reasons which will become clearer in chapter 5, as one increases the nuclear field with respect to the interactions between electrons, the filling of the long periods no longer occurs in the same way. [Pg.19]

Mendeleef drew up a table of elements considering the chemical properties, notably the valencies, of the elements as exhibited in their oxides and hydrides. A part of Mendeleefs table is shown in Figure 1.2 -note that he divided the elements into vertical columns called groups and into horizontal rows called periods or series. Most of the groups were further divided into sub-groups, for example Groups... [Pg.2]

Chemical properties and spectroscopic data support the view that in the elements rubidium to xenon, atomic numbers 37-54, the 5s, 4d 5p levels fill up. This is best seen by reference to the modern periodic table p. (i). Note that at the end of the fifth period the n = 4 quantum level contains 18 electrons but still has a vacant set of 4/ orbitals. [Pg.9]

The chemical properties of the elements in a given group of the Periodic Table change with increasing atomic number. [Pg.205]

The trends in chemical and physical properties of the elements described beautifully in the periodic table and the ability of early spectroscopists to fit atomic line spectra by simple mathematical formulas and to interpret atomic electronic states in terms of empirical quantum numbers provide compelling evidence that some relatively simple framework must exist for understanding the electronic structures of all atoms. The great predictive power of the concept of atomic valence further suggests that molecular electronic structure should be understandable in terms of those of the constituent atoms. [Pg.7]

The development of the structural theory of the atom was the result of advances made by physics. In the 1920s, the physical chemist Langmuir (Nobel Prize in chemistry 1932) wrote, The problem of the structure of atoms has been attacked mainly by physicists who have given little consideration to the chemical properties which must be explained by a theory of atomic structure. The vast store of knowledge of chemical properties and relationship, such as summarized by the Periodic Table, should serve as a better foundation for a theory of atomic structure than the relativity meager experimental data along purely physical lines. ... [Pg.33]

Study of the chemical properties of element 104 has confirmed that it is indeed homologous to hafnium as demanded by its position in the Periodic Table (20). Chemical studies have been made for element 105, showing some similarity to tantalum (25) no chemical studies have been made for elements 106—109. Such studies are very difficult because the longest-Hved isotope of 104 ( 104) has a half-Hfe of only about 1 min, of 105 ( 105) a half-Hfe of about 40 s, of 106 ( 106) a half-Hfe of about 1 s, and of elements 107—109 half-Hves in the range of milliseconds. [Pg.225]

Hafnium [7440-58-6] Hf, is in Group 4 (IVB) of the Periodic Table as are the lighter elements zirconium and titanium. Hafnium is a heavy gray-white metallic element never found free in nature. It is always found associated with the more plentiful zirconium. The two elements are almost identical in chemical behavior. This close similarity in chemical properties is related to the configuration of the valence electrons, and for zirconium and... [Pg.439]

Nickel occurs in the first transition row in Group 10 (VIIIB) of the Periodic Table. Some physical properties are given in Table 1 (1 4). Nickel is a high melting point element having a ductile crystal stmcture. Its chemical properties allow it to be combined with other elements to form many alloys. [Pg.1]

The platinum-group metals (PGMs), which consist of six elements in Groups 8— 10 (VIII) of the Periodic Table, are often found collectively in nature. They are mthenium, Ru rhodium, Rh and palladium, Pd, atomic numbers 44 to 46, and osmium. Os indium, Ir and platinum, Pt, atomic numbers 76 to 78. Corresponding members of each triad have similar properties, eg, palladium and platinum are both ductile metals and form active catalysts. Rhodium and iridium are both characterized by resistance to oxidation and chemical attack (see Platinum-GROUP metals, compounds). [Pg.162]

By this time, the Periodic Table of elements was well developed, although it was considered a function of the atomic mass rather than atomic number. Before the discovery of radioactivity, it had been estabUshed that each natural element had a unique mass thus it was assumed that each element was made up of only one type of atom. Some of the radioactivities found in both the uranium and thorium decays had similar chemical properties, but because these had different half-Hves it was assumed that there were different elements. It became clear, however, that if all the different radioactivities from uranium and thorium were separate elements, there would be too many to fit into the Periodic Table. [Pg.443]

Rubidium [7440-17-7] Rb, is an alkali metal, ie, ia Group 1 (lA) of the Periodic Table. Its chemical and physical properties generally He between those of potassium (qv) and cesium (see Cesiumand cesium compounds Potassium compounds). Rubidium is the sixteenth most prevalent element ia the earth s cmst (1). Despite its abundance, it is usually widely dispersed and not found as a principal constituent ia any mineral. Rather it is usually associated with cesium. Most mbidium is obtained from lepidoHte [1317-64-2] an ore containing 2—4% mbidium oxide [18088-11-4]. LepidoHte is found ia Zimbabwe and at Bernic Lake, Canada. [Pg.278]

Strontium [7440-24-6] Sr, is in Group 2 (IIA) of the Periodic Table, between calcium and barium. These three elements are called alkaline-earth metals because the chemical properties of the oxides fall between the hydroxides of alkaU metals, ie, sodium and potassium, and the oxides of earth metals, ie, magnesium, aluminum, and iron. Strontium was identified in the 1790s (1). The metal was first produced in 1808 in the form of a mercury amalgam. A few grams of the metal was produced in 1860—1861 by electrolysis of strontium chloride [10476-85-4]. [Pg.472]

Barium is a member of the aLkaline-earth group of elements in Group 2 (IIA) of the period table. Calcium [7440-70-2], Ca, strontium [7440-24-6], Sr, and barium form a closely aUied series in which the chemical and physical properties of the elements and thek compounds vary systematically with increa sing size, the ionic and electropositive nature being greatest for barium (see Calcium AND CALCIUM ALLOYS Calcium compounds Strontium and STRONTIUM compounds). As size increases, hydration tendencies of the crystalline salts increase solubiUties of sulfates, nitrates, chlorides, etc, decrease (except duorides) solubiUties of haUdes in ethanol decrease thermal stabiUties of carbonates, nitrates, and peroxides increase and the rates of reaction of the metals with hydrogen increase. [Pg.475]

In so far as the chemical (and physical) properties of an element derive from its electronic configuration, and especially the configuration of its least tightly bound electrons, it follows that chemical periodicity and the form of the periodic table can be elegantly interpreted in terms of electronic structure. [Pg.23]


See other pages where Chemical properties, periodic table is mentioned: [Pg.981]    [Pg.226]    [Pg.405]    [Pg.531]    [Pg.88]    [Pg.196]    [Pg.25]    [Pg.2391]    [Pg.14]    [Pg.14]    [Pg.205]    [Pg.139]    [Pg.174]    [Pg.216]    [Pg.227]    [Pg.439]    [Pg.494]    [Pg.80]    [Pg.117]    [Pg.495]    [Pg.165]    [Pg.2]    [Pg.441]    [Pg.18]    [Pg.535]    [Pg.35]    [Pg.21]    [Pg.27]    [Pg.34]    [Pg.217]    [Pg.823]    [Pg.1180]   
See also in sourсe #XX -- [ Pg.40 ]




SEARCH



Chemical periodicity

Chemical properties periodic Table, positions

Chemical properties, table

Periodic table properties

Property tables

© 2024 chempedia.info