Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Charge Transfer reactivity

MM, UFF, molecular mechanics, universal force field. Ref. (14). Charge transfer reactive force field. Ref. (92). [Pg.18]

We thus have well-defined charge-transfer reactivities (electrophilic/electro-phobic) for gapless systems the Fukui function,... [Pg.158]

The aromatic ring has high electron density. As a result of this electron density, toluene behaves as a base, not only in aromatic ring substitution reactions but also in the formation of charge-transfer (tt) complexes and in the formation of complexes with super acids. In this regard, toluene is intermediate in reactivity between benzene and the xylenes, as illustrated in Table 2. [Pg.175]

A proposed explanation of the reactivity of the 4-position versus that of the 2-position in pyridinium compounds has been advanced by Kosower and Klinedinst nucleophiles which are expected to form charge-transfer complexes will tend to substitute at the 4-position. However, it is not clear why this (usually unknown) property should govern the site of substitution, except for a bifunctional nucleophile such as hydrosulfite ion which can form a suitable bridge from the nitrogen to the 4-position. [Pg.180]

In many cases, the effects of the nucleophile observed with carbo-aromatics can be expected to carry over to heteroaromatics, e.g., changing the relative reactivity of leaving groups (Section II, D, 2, b) deceleration by charge-transfer complexing with the substrate... [Pg.256]

The structure of the complex of (S)-tryptophan-derived oxazaborolidine 4 and methacrolein has been investigated in detail by use of H, B and NMR [6b. The proximity of the coordinated aldehyde and indole subunit in the complex is suggested by the appearance of a bright orange color at 210 K, caused by formation of a charge-transfer complex between the 7t-donor indole ring and the acceptor aldehyde. The intermediate is thought to be as shown in Fig. 1.2, in which the s-cis conformer is the reactive one. [Pg.9]

Scheme 10.5 Tentative mechanism for cytochrome P450-cata-lyzed epoxidation of a double bond. The reactive iron-oxo species VII (see Scheme 10.4) reacts with the olefin to give a charge transfer (CT) complex. This complex then resolves into the epoxide either through a radical or through a cationic intermediate. Scheme 10.5 Tentative mechanism for cytochrome P450-cata-lyzed epoxidation of a double bond. The reactive iron-oxo species VII (see Scheme 10.4) reacts with the olefin to give a charge transfer (CT) complex. This complex then resolves into the epoxide either through a radical or through a cationic intermediate.
Finally, stereoregularity of the initial PAN also affects the disposition of a CTC obtained from this polymer to the formation of photoinduced states with complete charge transfer. Both the values of the stationary concentration of these states and the rate of growth to this level, are considerably higher for a PCS obtained from the polymer with elevated stereoregularity. All this characterizes the effect of PCS stereoregularity on their reactivity in the formation of a CTC. The semi-conductive properties of PCS complexes of various classes with electron donors have been studied267, 268 ... [Pg.34]

A large red shift observed in polar solvents was indicative of the intramolecular charge transfer character of the triplet state. The change of dipole moment accompanying the transition Tj - Tn, as well as rate constants for electron and proton transfer reactions involving the T state of a-nitronaphthalene, were determined. The lower reactivity in polar solvents was attributed to a reduced n-n and increased charge transfer character of the triplet state... [Pg.737]

The radical anions of dialkyl sulfoxides (or sulfones) may be obtained by direct capture of electron during y-irradiation. It was shown that electron capture by several electron acceptors in the solid state gave anion adducts 27. It was concluded276 that these species are not properly described as radical anions but are genuine radicals which, formed in a solid state cavity, are unable to leave the site of the anions and exhibit a weak charge-transfer interaction which does not modify their conformation or reactivity appreciably, but only their ESR spectra. For hexadeuteriodimethyl sulfoxide in the solid state, electron capture gave this kind of adduct 278,28 (2H isotopic coupling 2.97 G is less than 3.58 G normally found for -CD3). [Pg.1053]

First of all, the reaction pathways shown in Scheme 1 involve the formation of charge transfer complexes (CTC) between olefin and Br2- The formation of molecular complexes during olefin bromination had been hypothesized often (ref. 2), but until 1985, when we published a work on this subject (ref. 3), complexes of this type had been observed only in a very limited number of circumstances, all of which have in common a highly reduced reactivity of the olefm-halogen system, i.e. strongly deactivated olefins (ref. 4), or completely apolar solvents (ref. 5) or very low temperatures (ref 6). [Pg.129]


See other pages where Charge Transfer reactivity is mentioned: [Pg.19]    [Pg.105]    [Pg.377]    [Pg.146]    [Pg.170]    [Pg.170]    [Pg.170]    [Pg.171]    [Pg.218]    [Pg.129]    [Pg.19]    [Pg.105]    [Pg.377]    [Pg.146]    [Pg.170]    [Pg.170]    [Pg.170]    [Pg.171]    [Pg.218]    [Pg.129]    [Pg.1949]    [Pg.2320]    [Pg.23]    [Pg.159]    [Pg.190]    [Pg.311]    [Pg.236]    [Pg.26]    [Pg.65]    [Pg.395]    [Pg.110]    [Pg.128]    [Pg.1097]    [Pg.329]    [Pg.19]    [Pg.223]    [Pg.156]    [Pg.212]    [Pg.281]    [Pg.126]    [Pg.126]    [Pg.379]    [Pg.1097]    [Pg.179]    [Pg.182]   
See also in sourсe #XX -- [ Pg.89 , Pg.90 , Pg.91 , Pg.92 , Pg.93 , Pg.94 , Pg.95 , Pg.96 , Pg.97 , Pg.98 ]




SEARCH



© 2024 chempedia.info