Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chain-end controlled polymerizations

The production of highly isotactic PPs with Zr- and Hf-FI catalysts//-Bu3Al/ Ph3CB(C6F5)4 (phenoxy-amine complexes site-controlled polymerization with 1,2-insertion) is in sharp contrast to that of highly syndiotactic PPs with Ti-FI cata-lysts/MAO (phenoxy-imine complexes chain-end controlled polymerization with 2,1-insertion), which will be described later [64]. [Pg.26]

A site-inversion mechanism (the key feature of which is that isomerization between diastereomeric and A configurations is rapid on the propylene-insertion time scale) based on theoretical calculations was proposed by Cavallo and coworkers in order to explain the ligand-directed chain-end controlled polymerizations (Fig. 35) [42]. The site-inversion mechanism allows chain-end control to work in concert with the site control effects. Our experimental results and the expected catalytic behavior resulting from the site-inversion mechanism concur with each other very well. [Pg.37]

Since the 1960s the syndiospecific chain-end controlled polymerization of propene in the presence of homogeneous vanadium-based catalytic systems has been known. For these systems, it has been well established by the work of Zambelli and co-workers that the polymerization is poorly regioselective and the stereoselective (and possibly syndiospecific) step is propene insertion into the metal secondary carbon bond with formation of a new secondary metal-carbon bond.133134... [Pg.48]

In 1984, Ewen reported the first chain-end controlled polymerization of propylene to isotactic polypropylene with metallocene catalysts, using the unbridged C2v-symmetric bis(cyclopentadienyl)titanium diphenyl complex 26 at low temperature (Figure 1.16). With this catalyst system, partially isotactic PP with mmmm = 52% is obtained at -45 °C. [Pg.23]

Chain End Control Model. The general case can be simplified to Bovey s chain-end control Bernoullian equations. The chain-end control polymerizations are defined with the following assumptions... [Pg.476]

An excellent way to treat such data is to use reaction probability models.(1,2) In the NMR analysis of tacticity, it is frequently possible to distinguish whether the configuration is chain-end controlled or catalytic-site controlled during polymerization. Various statistical models have been proposed. The chain-end controlled models include Bemoullian (B), and first- and second-order Markovian (Ml and M2) statistics.(1) The simplest catalytic-site controlled model is the enantiomorphic site (E) model.(3) The relationship between the chain-end and catalytic-site controlled models and possible hybrid models have been delineated in a recent article.(4)... [Pg.174]

In contrast to the case of Cp2ZrX2/MAO giving atactic poly(alkene)s, Cp MCl2/MAO, M = Zr (139) and Hf (140), are the catalyst precursors of the syndiotactic polymerization of 1-butene and propylene [176]. Triad distribution indicated that this is chain-end controlled syndiospecific polymerization. The syndiospecificity is attributed to the increase of steric encumbrance around the metal center. Thus, Cp HfX2 is the most effective syndiospecific catalyst component in this system. [Pg.30]

With MAO activation, Zr- and Hf-FI catalysts 1 and 3 exhibit fairly high reactivity toward propylene and produce propylene oligomers [64, 65], Conversely, the corresponding Ti-FI catalyst/MAO 2 forms semicrystalline PP (1 °C polymerization), which displays a peak melting temperature of 97 °C, indicative of the formation of a stereoregular polymer. To our surprise, microstructural analysis by 13C NMR indicates that the resultant polymer is syndiotactic (rr 19%), and that a chain-end control mechanism is responsible for the observed stereocontrol, regardless of the C2 symmetric catalyst ([28] for the first report on syndiospecific propylene... [Pg.24]

Section 4 will deal with catalytic systems whose stereospecificity is controlled principally by the chirality of the closest tertiary carbon atom of the growing chain (chain-end stereocontrol). In Section 4.1 possible mechanisms for chain-end controlled isospecific and syndiospecific propene polymerizations will be reviewed. In Section 4.2 informations relative to the mechanism of chain-end controlled syndiospecific polymerization of styrene and substituted styrenes will be reviewed. In Section 4.3 chain-end controlled mechanisms for the isospecific and syndiospecific cis-1,4 and 1,2 polymerizations of dienes will be presented. [Pg.8]

Chain-end controlled isospecificity and syndiospecificity for 1-alkene polymerizations at low temperatures with achiral metallocenes have also been reported.2,163 81131135 The polymerization with these catalysts is highly regio-specific in favor of primary monomer insertion. [Pg.48]

A syndiospecific chain-end controlled propene polymerization by Brookhart-type136 Ni(II) catalysts at low temperatures, also occurring through a primary... [Pg.48]

Recently, bis(imino)pyridyl Fe(II)-based catalysts have been reported to afford isospecific chain-end controlled propene polymerization occurring through secondary monomer insertion.138 139 Even more recently, catalytic systems based on the octahedral bis(salicylaldiminato)Ti complex have been reported to afford syndiospecific chain-end controlled propene polymerization,140 which possibly occurs through secondary monomer insertion.141... [Pg.49]

Figure 10.11. Single mistake during a chain-end controlled isotactic polymerization and schematic 13C NMR spectrum of the methyl region (assuming that chain continues in m mode)... Figure 10.11. Single mistake during a chain-end controlled isotactic polymerization and schematic 13C NMR spectrum of the methyl region (assuming that chain continues in m mode)...
The mechanical properties of PLA rely on the stereochemistry of insertion of the lactide monomer into the PLA chain, and the process can be controlled by the catalyst used. Therefore, PLAs with desired microstructures (isotactic, heterotactic, and S3mdiotactic) can be derived from the rac- and W50-Iactide depending on the stereoselectivity of the metal catalysts in the course of the polymerization (Scheme 15) [66]. Fundamentally, two different polymerization mechanisms can be distinguished (1) chain-end control (depending on stereochemistry of the monomer), and (2) enantiomorphic site control (depending on chirality of the catalyst). In reality, stereocontrolled lactide polymerization can be achieved with a catalyst containing sterically encumbered active sites however, both chain-end and site control mechanisms may contribute to the overall stereocontrol [154]. Homonuclear decoupled NMR analysis is considered to be the most conclusive characterization technique to identify the PLA tacticity [155]. Homonuclear... [Pg.265]


See other pages where Chain-end controlled polymerizations is mentioned: [Pg.37]    [Pg.714]    [Pg.90]    [Pg.415]    [Pg.243]    [Pg.37]    [Pg.714]    [Pg.90]    [Pg.415]    [Pg.243]    [Pg.3]    [Pg.15]    [Pg.17]    [Pg.42]    [Pg.182]    [Pg.23]    [Pg.28]    [Pg.31]    [Pg.36]    [Pg.1]    [Pg.55]    [Pg.106]    [Pg.27]    [Pg.494]    [Pg.75]    [Pg.75]    [Pg.199]    [Pg.638]   


SEARCH



Chain controller

Chain ends

Chain-end control

Controlled polymerization

© 2024 chempedia.info