Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Centres living

No support can be regarded as inert with respect to the active centres. By its universally positive effect on the activity of centres, MgCl2 is superior to any other support. In spite of the great technical importance of Mg in active centres, generally not much is known of their structure in third-generation catalysts (or perhaps because of its positive effects all the important producers have published hundreds of patents, but the crucial factors may still be kept secret). It is suspected that the separation (dilution) of transition metal atoms by a barrier of Mg atoms enables the majority of transition metals to become part of the active centres on these centres, the polymer grows more rapidly than on centres without Mg. Mutual contact of the centres is hindered, bimolecular termination of centres (transition metal reduction to a less active oxidation state) is limited, and the centres live longer. [Pg.208]

The initiation step is normally fast in polar solvents and an initiator-free living polymer of low molecular weight can be produced for study of the propagation reaction. The propagation step may proceed at both ends of the polymer chain (initiation by alkali metals, sodium naphthalene, or sodium biphenyl) or at a single chain end (initiation by lithium alkyls or cumyl salts of the alkali metals). The concentration of active centres is either twice the number of polymer chains present or equal to their number respectively. In either case the rates are normalized to the concentration of bound alkali metal present, described variously as concentration of active centres, living ends or sometimes polystyryllithium, potassium, etc. Much of the elucidation of reaction mechanism has occurred with styrene as monomer which will now be used to illustrate the principles involved. The solvents commonly used are dioxane (D = 2.25), oxepane (D = 5.06), tetrahydropyran D = 5.61), 2-methyl-tetrahydrofuran (D = 6.24), tetrahydrofuran (D = 7.39) or dimethoxy-ethane D = 7.20) where D denotes the dielectric constant at 25°C. [Pg.28]

As is the case for cationic polymerisation, anionic polymerisation can terminate by only one mechanism, that is by proton transfer to give a terminally unsaturated polymer. However, proton transfer to initiator is rare - in the example just quoted, it would involve the formation of the unstable species NaH containing hydride ions. Instead proton transfer has to occur to some kind of impurity which is capable for forming a more stable product. This leads to the interesting situation that where that monomer has been rigorously purified, termination cannot occur. Instead reaction continues until all of the monomer has been consumed but leaves the anionic centre intact. Addition of extra monomer causes further polymerisation to take place. The potentially reactive materials that result from anionic initiation are known as living polymers. [Pg.34]

Third generation initiators are based on the NHC system of second generation initiators, but do not contain any phosphine ligand. Instead, one or two pyridine ligands are weakly bound to the ruthenium centre (c/. Fig. 3.28, complexes 73 and 74c). Pyridine dissociates very easily and hardly competes with the olefin for the coordination site. As a result, complete initiation and fast propagation are enabled, therefore living polymerisation is rendered possible. [Pg.84]

FIG. 3. Confocal images showing the location of the SR in live myocytes within an intact, small diameter (< 250 nm passive diameter), pressurized (70 mmHg) artery from the rat mesenteric artery arcade. The artery was loaded with Fluo-4 as the membrane-permeant acetoxymethyl ester. Some of this high-affinity, Ca2+ indicator dye is often sequestered in the SR (cf. Goldman et al 1990). The SR can then be readily visualized, especially when [Ca2+]CYx is low (as in the panels at 0 and 6.8 s), because the intra-SR dye is saturated with Ca2+, and fluoresces brightly. This artery was treated with 1.0 fim phenylephrine (PE), which caused the [Ca2+]CYT level to oscillate asynchronously in the cells seen in the centre of the panel. The cell outlines are clearly visible when [Ca2+]CYT tiscs, as in the panels at 3.4 and 10.2 s. Note that nearly all of the SR (the very bright areas, especially in the 0 and 3.4 s panels) lies parallel to, and immediately beneath the PL (from Miriel at al 1999, with permission). [Pg.130]

Release of DNA in vivo takes place due to the increased acidic conditions inside living cells that result in the destabilization of the ORMOSIL-DNA complex. SiCVbased nanoparticles, in fact, do not release encapsulated biomolecules because of the strong hydrogen bonding between the biomolecule s polar centres and the silanols at the cage surface (as ORMOSIL-entrapped hydrophobic molecules are not leached in aqueous systems due to strong hydrophobic interactions).17... [Pg.60]

Esters which are unstable and/or too reactive, such as those of CF3S03H, require a negative modifier (donor), e.g., a dialkyl sulphide, to give living systems such modifiers form a D-A complex with an acceptor centre, e.g., the acidic protons, at the growing end. [Pg.721]

Studies on three different iron-sulfur enzyme systems, which all require S-adenosyl methionine—lysine 2,3-aminomutase, pyruvate formate lyase and anaerobic ribonucleotide reductase—have led to the identification of SAM as a major source of free radicals in living cells. As in the dehydratases, these systems have a [4Fe-4S] centre chelated by only three cysteines with one accessible coordination site. The cluster is active only in the reduced... [Pg.228]

This very efficient, time-honoured pathway suffers however a very severe limitation, i.e. the relative reactivity of the living centre C must be adapted to the structure and reactivity of monomer M2, a requirement which is not very often met. [Pg.308]


See other pages where Centres living is mentioned: [Pg.292]    [Pg.14]    [Pg.301]    [Pg.137]    [Pg.250]    [Pg.160]    [Pg.166]    [Pg.55]    [Pg.195]    [Pg.4]    [Pg.28]    [Pg.323]    [Pg.242]    [Pg.59]    [Pg.70]    [Pg.490]    [Pg.200]    [Pg.159]    [Pg.154]    [Pg.745]    [Pg.137]    [Pg.347]    [Pg.69]    [Pg.334]    [Pg.504]    [Pg.548]    [Pg.420]    [Pg.698]    [Pg.703]    [Pg.704]    [Pg.709]    [Pg.720]    [Pg.160]    [Pg.273]    [Pg.580]    [Pg.583]    [Pg.32]    [Pg.19]    [Pg.387]    [Pg.174]    [Pg.184]   
See also in sourсe #XX -- [ Pg.163 , Pg.184 , Pg.221 , Pg.243 , Pg.363 ]




SEARCH



Centres, active living

© 2024 chempedia.info