Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cellulose carboxylic acids

Food-grade CMC is a cellulose carboxylic acid ether with an optimum DS = 0.4-0.7. The higher the DS within this range, the more hydrophilic is the polyanion. Uniformity of substitution makes CMC more compatible with dissolved salts and less inclined to thixotropy than uneven distribution (Feddersen and Thorp, 1993). This gum does not precipitate from a 50% ethanol solution. Below approximately pH 4 in water, the polyanions revert to the un-ionized, water-insoluble acid. CMC viscosity-hysteresis has already been described (Fig. 2 in Chapter 3). CMC dispersions and films have the extra advantage of transparency relative to many other polysaccharide dispersions. The films are resistant to oils, grease, and organic solvents (Hercules, Inc., 1980). [Pg.171]

Some materials such as water, alcohols, carboxylic acids and primary and secondary amines may be able to act simultaneously as proton donors and acceptors. Cellulose and poly(vinyl alcohol) are two polymers which also function in this way. [Pg.87]

Carbon, hydrogen and possibly oxygen Resin and derivatives Natural drying oils Cellulose derivatives Alkyd resins Epoxy resins (uncured) Phenol-formaldehyde resins Polystyrene Acrylic resins Natural and synthetic rubbers Carbon monoxide Aldehydes (particularly formaldehyde, acrolein and unsaturated aldehydes) Carboxylic acids Phenols Unsaturated hydrocarbons Monomers, e.g. from polystyrene and acrylic resins... [Pg.138]

Plasticizers can be classified according to their chemical nature. The most important classes of plasticizers used in rubber adhesives are phthalates, polymeric plasticizers, and esters. The group phthalate plasticizers constitutes the biggest and most widely used plasticizers. The linear alkyl phthalates impart improved low-temperature performance and have reduced volatility. Most of the polymeric plasticizers are saturated polyesters obtained by reaction of a diol with a dicarboxylic acid. The most common diols are propanediol, 1,3- and 1,4-butanediol, and 1,6-hexanediol. Adipic, phthalic and sebacic acids are common carboxylic acids used in the manufacture of polymeric plasticizers. Some poly-hydroxybutyrates are used in rubber adhesive formulations. Both the molecular weight and the chemical nature determine the performance of the polymeric plasticizers. Increasing the molecular weight reduces the volatility of the plasticizer but reduces the plasticizing efficiency and low-temperature properties. Typical esters used as plasticizers are n-butyl acetate and cellulose acetobutyrate. [Pg.626]

Note Aldoses other than glucose can also be used e.g. arabinose [1], xylose [2, 3, 7] or ribose [4]. The background color is least on cellulose layers when cellulose acetate, aluminium oxide 150, silica gel, RP, NH2 or polyamide layers are employed the background is a more or less intense ochre. The detection limit of carboxylic acids on cellulose layers is ca. 0.5 pg substance per chromatogram zone. [Pg.177]

In principle, some of these problems may be avoided if the carboxylic acid proper is employed for cellulose esterification. This approach, however, is not attractive because low yield, and polymer degradation are expected. The rea-... [Pg.131]

Schemes are available, however, that start from the free carboxylic acid, plus an activator . Dicyclohexylcarbodiimide, DCC, has been extensively employed as a promoter in esterification reactions, and in protein chemistry for peptide bond formation [187]. Although the reagent is toxic, and a stoichiometric concentration or more is necessary, this procedure is very useful, especially when a new derivative is targeted. The reaction usually proceeds at room temperature, is not subject to steric hindrance, and the conditions are mild, so that several types of functional groups can be employed, including acid-sensitive unsaturated acyl groups. In combination with 4-pyrrolidinonepyridine, this reagent has been employed for the preparation of long-chain fatty esters of cellulose from carboxylic acids, as depicted in Fig. 5 [166,185,188] ... Schemes are available, however, that start from the free carboxylic acid, plus an activator . Dicyclohexylcarbodiimide, DCC, has been extensively employed as a promoter in esterification reactions, and in protein chemistry for peptide bond formation [187]. Although the reagent is toxic, and a stoichiometric concentration or more is necessary, this procedure is very useful, especially when a new derivative is targeted. The reaction usually proceeds at room temperature, is not subject to steric hindrance, and the conditions are mild, so that several types of functional groups can be employed, including acid-sensitive unsaturated acyl groups. In combination with 4-pyrrolidinonepyridine, this reagent has been employed for the preparation of long-chain fatty esters of cellulose from carboxylic acids, as depicted in Fig. 5 [166,185,188] ...
Then, the examples from Reference 23, that focus on retention of the selected binary mixtures of the test analytes (one comprising carboxylic acid and ketone and the other made of alcohol and ketone), chromatographed under the deliberately mild working conditions (microcrystalline cellulose was used as adsorbent and either decalin or n-octane as the monocomponent mobile phase) will be discussed. One of the test solutes in each binary mixture (either acid or alcohol) can be viewed as... [Pg.23]

More recently, the fixation efficiency on cotton of Cl Reactive Red 177 (7-43) and its 4-carboxyphenylazo analogue in the presence of various carbodiimides (including 7-44 and 7.45) was investigated, as well as homogeneous reactions of selected carboxylic acids with alcohols (including acetylcellulose in acetone). The carboxylated dye reacted more effectively with cotton cellulose in the presence of cyanamide rather than dicyandiamide,... [Pg.381]

The end group which is produced contains a carboxylic acid functionality which has an influence on the anionicity of pulp fibres (Chapter 6) but, in this form, it is resistant to further alkaline degradation. The hemicelluloses are also able to undergo the same type of peeling reaction but at different rates from each other and from cellulose. The /3-1,4-xylans, for example, are more stable to alkaline degradation than the glucomannans. [Pg.45]


See other pages where Cellulose carboxylic acids is mentioned: [Pg.141]    [Pg.338]    [Pg.141]    [Pg.338]    [Pg.447]    [Pg.448]    [Pg.501]    [Pg.389]    [Pg.284]    [Pg.109]    [Pg.127]    [Pg.128]    [Pg.132]    [Pg.134]    [Pg.134]    [Pg.135]    [Pg.138]    [Pg.697]    [Pg.145]    [Pg.6]    [Pg.264]    [Pg.857]    [Pg.20]    [Pg.103]    [Pg.267]    [Pg.220]    [Pg.115]    [Pg.412]    [Pg.303]    [Pg.339]    [Pg.90]    [Pg.89]    [Pg.174]    [Pg.67]    [Pg.623]    [Pg.35]    [Pg.79]   
See also in sourсe #XX -- [ Pg.312 ]




SEARCH



Carboxyl Cellulose

Carboxyl Cellulosic

Carboxylic acid chlorides, cellulose

Carboxylic acid chlorides, cellulose acylation

© 2024 chempedia.info