Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cations regioselectivity

Replacement of one carbonyl group by phosphine (thus creating chirality at cobalt) has been shown to permit enantioselective addition of nucleophiles to the cations. Regioselectivity of aromatic substitution by the cations has been studied in resorcinol derivatives and examples of aromatic substitution extended to include indoles. ... [Pg.303]

Some straightforward, efficient cyclopentanellation procedures were developed recently. Addition of a malonic ester anion to a cyclopropane-1,1-dicarboxylic ester followed by a Dieckmann condensation (S. Danishefsky, 1974) or addition of iJ-ketoester anions to a (l-phenylthiocyclopropyl)phosphonium cation followed by intramolecular Wittig reaction (J.P, Marino. 1975) produced cyclopentanones. Another procedure starts with a (2 + 21-cycloaddition of dichloroketene to alkenes followed by regioselective ring expansion with diazomethane. The resulting 2,2-dichlorocyclopentanones can be converted to a large variety of cyclopentane derivatives (A.E. Greene. 1979 J.-P. Deprds, 1980). [Pg.83]

Dehydration of alcohols (Sections 5 9-5 13) Dehydra tion requires an acid catalyst the order of reactivity of alcohols IS tertiary > secondary > primary Elimi nation is regioselective and proceeds in the direction that produces the most highly substituted double bond When stereoisomeric alkenes are possible the more stable one is formed in greater amounts An El (elimination unimolecular) mechanism via a carbo cation intermediate is followed with secondary and tertiary alcohols Primary alcohols react by an E2 (elimination bimolecular) mechanism Sometimes elimination is accompanied by rearrangement... [Pg.222]

Why IS there such a marked difference between methyl and trifluoromethyl substituents m their influence on electrophilic aromatic substitution s Methyl is activating and ortho para directing trifluoromethyl is deactivating and meta directing The first point to remember is that the regioselectivity of substitution is set once the cyclohexadienyl cation intermediate is formed If we can explain why... [Pg.489]

Sections How substituents control rate and regioselectivity m electrophilic aro 12 10-12 14 matic substitution results from their effect on carbocation stability An electron releasing substituent stabilizes the cyclohexadienyl cation inter mediates corresponding to ortho and para attack more than meta... [Pg.509]

In view of the overall increased reactivity of furan compared with thiophene it would be anticipated that furan would be less regioselective in its reactions with electrophiles than thiophene. Possible reasons for the high regioselectivity of furan in electrophilic substitution reactions include complex formation between substrates and reagents and the ability of heteroatoms to assist in the stabilization of cationic intermediates (80CHE1195). [Pg.44]

Honk et al. concluded that this FMO model imply increased asynchronicity in the bond-making processes, and if first-order effects (electrostatic interactions) were also considered, a two-step mechanisms, with cationic intermediates become possible in some cases. It was stated that the model proposed here shows that the phenomena generally observed on catalysis can be explained by the concerted mechanism, and allows predictions of the effect of Lewis acid on the rates, regioselectivity, and stereoselectivity of all concerted cycloadditions, including those of ketenes, 1,3-dipoles, and Diels-Alder reactions with inverse electron-demand [2],... [Pg.305]

Both electrophilic and nucleophilic reactions can generate halogenopur-ines with differences in regioselectivity dependent on substituents and on the nature of the substrate (anion, neutral molecule, or cation). In the neutral molecule nucleophilic displacements occur in the order 2 > 4 > 6 in the anion the imidazole ring may be sufficiently 7r-excessive for attack to occur at C-2, and the nucleophilic substitution order becomes 4 > 6 > 2. Strong electron donors are usually necessary to promote 2-halogenation by electrophilic halogen sources. [Pg.321]

One major task is the selection of the optimal cation" for a given carbanion . It determines to a great extent the mechanism of the reaction and the positional and configurational stability of the allyl moiety, and thus, the regioselectivity, EjZ selectivity, and diastereoselectivity. Some reviews cover these topics in general1 " 5. [Pg.207]

Jones and coworkers200 found that a variety of sulphenic acids may be generated by thermolysis of the readily available /J-cyanosulphoxides (equation 81) and observed their highly regiospecific addition also to non-conjugated alkynes (Table 12). As expected for a pericyclic mechanism, the reaction afforded the product of a stereospecific cis-addition. However, the regioselectivity of the addition suggests that the partial carbon-sulphur bond in the transition state 148 is polarized in such a way that the carbon atom has some cationic character (equation 82). [Pg.270]

Dimethoxyethylacrylate (94) may be readily converted into the cationic species 95 by the action of Lewis acids [92] (Equation 3.32) the cationic species then undergoes Diels Alder reaction with a variety of dienes. The type of catalyst markedly affects the reaction yield, stereoselectivity and regioselectivity as shown in Scheme 3.19 and Equation 3.33. [Pg.128]

Acetylchloride is a trapping agent that allows the reaction to go completion, transforming the product into a less oxidizable compound.The results of other reactions between indole (57) and substituted cyclohexa-1,3-dienes show that the photo-induced Diels-Alder reaction is almost completely regioselective. In the absence of 59 the cycloaddition did not occur the presence of [2+2] adducts was never detected. Experimental data support the mechanism illustrated in Scheme 4.14. The intermediate 57a, originated from bond formation between the indole cation radical and 58, undergoes a back-electron transfer to form the adduct 60 trapped by acetyl chloride. [Pg.165]

The hydrosilylation of alkynes has also been studied using as catalysts Pt, Rh, Ir and Ni complexes. The improvement of the regioselectivity of the catalyst and the understanding of stereoelectronic factors that control it have been major incentives for the ongoing research. From numerous studies involving non-NHC catalysts, it has been established that there is a complex dependence of the product ratio on the type of metal, the aUcyne, the metal coordination sphere, the charge (cationic versus neutral) of the catalytic complex and the reaction conditions. In the Speier s and Karstedt s systems, mixtures of the thermodynamically more stable a- and -E-isomers are observed. Bulky phosphine ligands have been used on many occasions in order to obtain selectively P-f -isomers. [Pg.33]

The differences in the steric effect between catecholborane and pinacolborane, and the valence effect between a cationic or neutral rhodium complex reverse the re-gioselechvity for fluoroalkenes (Scheme 1-4) [26]. The reaction affords one of two possible isomers with excellent regioselectivity by selecting borane and the catalyst appropriately, whereas the uncatalyzed reaction of 9-BBN or SiaiBH failed to yield the hydroboration products because of the low nucleophilicity of fluoroalkenes. The regiochemical preference is consistent with the selectivity that is observed in the hydroboration of styrene. Thus, the internal products are selectively obtained when using a cationic rhodium and small catecholborane while bulky pinacolborane yields terminal products in the presence of a neutral rhodium catalyst. [Pg.6]

With trisubstituted benzoquinones and use of the cationic oxazaborolidinium catalyst B, 2-[tra-(isopropyl)silyloxy]-l,3-butadiene reacts at the monosubstituted quinone double bond. The reactions exhibit high regioselectivity and more than 95% e.e. With 2-mono- and 2,3-disubstimted quinones, reaction occurs at the unsubstituted double bond. The regiochemistry is directed by coordination to the catalyst at the more basic carbonyl oxygen. [Pg.506]

The mechanism for the reaction catalyzed by cationic palladium complexes (Scheme 24) differs from that proposed for early transition metal complexes, as well as from that suggested for the reaction shown in Eq. 17. For this catalyst system, the alkene substrate inserts into a Pd - Si bond a rather than a Pd-H bond [63]. Hydrosilylation of methylpalladium complex 100 then provides methane and palladium silyl species 112 (Scheme 24). Complex 112 coordinates to and inserts into the least substituted olefin regioselectively and irreversibly to provide 113 after coordination of the second alkene. Insertion into the second alkene through a boat-like transition state leads to trans cyclopentane 114, and o-bond metathesis (or oxidative addition/reductive elimination) leads to the observed trans stereochemistry of product 101a with regeneration of 112 [69]. [Pg.241]


See other pages where Cations regioselectivity is mentioned: [Pg.289]    [Pg.289]    [Pg.137]    [Pg.357]    [Pg.426]    [Pg.378]    [Pg.489]    [Pg.501]    [Pg.512]    [Pg.378]    [Pg.489]    [Pg.501]    [Pg.512]    [Pg.90]    [Pg.610]    [Pg.8]    [Pg.263]    [Pg.210]    [Pg.210]    [Pg.409]    [Pg.193]    [Pg.50]    [Pg.354]    [Pg.369]    [Pg.122]    [Pg.202]    [Pg.1065]    [Pg.44]    [Pg.122]    [Pg.5]    [Pg.104]    [Pg.46]   
See also in sourсe #XX -- [ Pg.7 , Pg.874 ]




SEARCH



Regioselectivity cationic pathways

© 2024 chempedia.info