Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic reactions ligands

Air-Stable and highly active dendritic phosphine oxide-stabilized palladium nanoparticles were prepared and applied in catalytic reactions Ligand exchange reactions at the surface of trioctylphosphine oxide-capped CdS quantum dots haver been studied using attenuated total reflection (ATR) IR spectroscopy ... [Pg.78]

There is more to tire Wilkinson hydrogenation mechanism tlian tire cycle itself a number of species in tire cycle are drained away by reaction to fomi species outside tire cycle. Thus, for example, PPh (Ph is phenyl) drains rhodium from tire cycle and tlius it inliibits tire catalytic reaction (slows it down). However, PPh plays anotlier, essential role—it is part of tire catalytically active species and, as an electron-donor ligand, it affects tire reactivities of tire intemiediates in tire cycle in such a way tliat tliey react rapidly and lead to catalysis. Thus, tliere is a tradeoff tliat implies an optimum ratio of PPh to Rli. [Pg.2703]

The strategy of the catalyst development was to use a rhodium complex similar to those of the Wilkinson hydrogenation but containing bulky chiral ligands in an attempt to direct the stereochemistry of the catalytic reaction to favor the desired L isomer of the product (17). Active and stereoselective catalysts have been found and used in commercial practice, although there is now a more economical route to L-dopa than through hydrogenation of the prochiral precursor. [Pg.165]

Several titanium(IV) complexes are efficient and reliable Lewis acid catalysts and they have been applied to numerous reactions, especially in combination with the so-called TADDOL (a, a,a, a -tetraaryl-l,3-dioxolane-4,5-dimethanol) (22) ligands [53-55]. In the first study on normal electron-demand 1,3-dipolar cycloaddition reactions between nitrones and alkenes, which appeared in 1994, the catalytic reaction of a series of chiral TiCl2-TADDOLates on the reaction of nitrones 1 with al-kenoyloxazolidinones 19 was developed (Scheme 6.18) [56]. These substrates have turned out be the model system of choice for most studies on metal-catalyzed normal electron-demand 1,3-dipolar cycloaddition reactions of nitrones as it will appear from this chapter. When 10 mol% of the catalyst 23a was applied in the reaction depicted in Scheme 6.18 the reaction proceeded to give a yield of up to 94% ee after 20 h. The reaction led primarily to exo-21 and in the best case an endo/ exo ratio of 10 90 was obtained. The chiral information of the catalyst was transferred with a fair efficiency to the substrates as up to 60% ee of one of the isomers of exo3 was obtained [56]. [Pg.226]

While certain TSILs have been developed to pull metals into the IL phase, others have been developed to keep metals in an IL phase. The use of metal complexes dissolved in IL for catalytic reactions has been one of the most fruitful areas of IL research to date. LLowever, these systems still have a tendency to leach dissolved catalyst into the co-solvents used to extract the product of the reaction from the ionic liquid. Consequently, Wasserscheid et al. have pioneered the use of TSILs based upon the dissolution into a conventional IL of metal complexes that incorporate charged phosphine ligands in their stmctures [16-18]. These metal complex ions become an integral part of the ionic medium, and remain there when the reaction products arising from their use are extracted into a co-solvent. Certain of the charged phosphine ions that form the basis of this chemistry (e.g., P(m-C6H4S03 Na )3) are commercially available, while others may be prepared by established phosphine synthetic procedures. [Pg.37]

Many transition metal complexes dissolve readily in ionic liquids, which enables their use as solvents for transition metal catalysis. Sufficient solubility for a wide range of catalyst complexes is an obvious, but not trivial, prerequisite for a versatile solvent for homogenous catalysis. Some of the other approaches to the replacement of traditional volatile organic solvents by greener alternatives in transition metal catalysis, namely the use of supercritical CO2 or perfluorinated solvents, very often suffer from low catalyst solubility. This limitation is usually overcome by use of special ligand systems, which have to be synthesized prior to the catalytic reaction. [Pg.213]

With respect to the ionic liquid s cation the situation is quite different, since catalytic reactions with anionic transition metal complexes are not yet very common in ionic liquids. However, an imidazolium moiety as an ionic liquid cation can act as a ligand precursor for the dissolved transition metal. Its transformation into a lig-... [Pg.222]

In comparison with catalytic reactions in compressed CO2 alone, many transition metal complexes are much more soluble in ionic liquids without the need for special ligands. Moreover, the ionic liquid catalyst phase provides the potential to activate and tune the organometallic catalyst. Furthermore, product separation from the catalyst is now possible without exposure of the catalyst to changes of temperature, pressure, or substrate concentration. [Pg.287]

The main aim of this review is to survey the reactions by which the Co—C bond is made, broken, or modified,.and which may be used for preparative purposes or be involved in catalytic reactions. Sufficient evidence is now available to show that there exists a general pattern of reactions by which the Co—C bond can be made or broken and in which the transition state may correspond to Co(III) and a carbanion (R ), Co(II) and a radical (R-), Co(I) and a carbonium ion (R ), or a cobalt hydride (Co—H) and an olefin. Reactions are also known in which the organo ligand (R) may be reversibly or irreversibly modified (to R ) without cleavage of the Co—C bond, or in which insertion occurs into the Co—C bond (to give Co—X—R). These reactions can be shown schematically as follows ... [Pg.335]

Data showing how the catalytic activity for ethene hydrogenation of La203-supported Rhe clusters increased as hydride ligands built up on the clusters are presented in Fig. 8 [37]. These results suggest that hydride ligands are intermediates in the catalytic reaction. [Pg.227]


See other pages where Catalytic reactions ligands is mentioned: [Pg.15]    [Pg.1]    [Pg.28]    [Pg.15]    [Pg.1]    [Pg.28]    [Pg.4]    [Pg.8]    [Pg.639]    [Pg.48]    [Pg.249]    [Pg.11]    [Pg.63]    [Pg.232]    [Pg.236]    [Pg.272]    [Pg.283]    [Pg.112]    [Pg.139]    [Pg.88]    [Pg.102]    [Pg.4]    [Pg.193]    [Pg.95]    [Pg.207]    [Pg.79]    [Pg.114]    [Pg.131]    [Pg.143]    [Pg.162]    [Pg.284]    [Pg.81]    [Pg.156]    [Pg.47]    [Pg.191]    [Pg.186]    [Pg.20]    [Pg.41]    [Pg.240]    [Pg.248]    [Pg.33]    [Pg.300]    [Pg.303]   
See also in sourсe #XX -- [ Pg.156 ]




SEARCH



Catalytic Reactions with Chiral Ligands

Fluorinated Ligands for Selective Catalytic Reactions

© 2024 chempedia.info