Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Graphitisation, cast iron

In principle the selective dissolution of the less noble component of a singlephase alloy would perhaps be expected and is in fact observed (dezincification of an a-brass, etc.) even though the details of the mechanism by which it occurs is not yet fully understood. In contrast, the preferential attack of the less noble phase of a two-phase alloy is not only expected and observed —the mechanism by which it occurs in practice is also quite clear. Selective dissolution of the more active phase of a two-phase alloy is best exemplified by the graphitic corrosion (or graphitisation) of grey cast iron. [Pg.48]

Cast iron behaves in a manner similar to steel at alkaline pH values but at low pH values it is subject to graphitisation. [Pg.357]

One of the outstanding properties of the austenitic irons is their resistance to graphitic corrosion or graphitisation . In some environments ferritic cast irons corrode in such a manner that the surface becomes covered with a layer of graphite. This compact graphite layer, being more noble than the matrix, markedly increases the rate of attack. The austenitic irons rarely form this... [Pg.603]

The characteristic mode of corrosion of some alloys may be the formation as a corrosion product of a redeposited layer of one of the alloy constituents, as in the case of the brasses that dezincify, or of a residue of one of the components, as in the case of the graphitic corrosion of cast iron. Particularly in the case of the dezincified brass, the adherent copper is not likely to be removed with the other corrosion products, and therefore the mass-loss determination will not disclose the total amount of brass that has been corroded. This is especially important because the copper layer has very little strength and ductility and the extent of weakening of the alloy will not be indicated by the mass loss. In these cases, also, the mass-loss determinations must be supplemented by, or replaced by, mechanical tests or metallographic examination, or both, to reveal the true extent of damage by corrosion. Difficulties in obtaining accurate mass losses of heavily graphitised specimens have been reported... [Pg.989]

Detailed consideration of the structure of many of the advanced and complex alloys which are of considerable technological importance (high-strength titanium alloys, nickel-base superalloys, etc.) is beyond the scope of this section, other than to point out that no new principles are involved. Certain titanium alloys, for example, exhibit a martensitic transformation, while many nickel-base superalloys are age hardening. Similarly, cast irons, although by no means advanced materials, are relatively complex they are considered in Section 1.3 where graphitisation is discussed. [Pg.1291]

As mentioned above for pewter objects, the corrosion products may maintain the shape of the object even though no metal is left. One of the best examples of this is observed in cast irons. The iron phase (ferrite) corrodes to form the same corrosion products as already stated above. The graphite flakes in the cast iron are inert and trap the corrosion products and the shape is maintained. This is called graphitisation of cast iron and almost all cast iron artefacts recovered from archaeological sites have graphitised layers on their surface. [Pg.134]


See other pages where Graphitisation, cast iron is mentioned: [Pg.49]    [Pg.397]    [Pg.785]    [Pg.1011]    [Pg.149]    [Pg.82]    [Pg.430]    [Pg.818]    [Pg.1044]   
See also in sourсe #XX -- [ Pg.3 , Pg.7 , Pg.54 , Pg.55 , Pg.63 , Pg.119 ]

See also in sourсe #XX -- [ Pg.3 , Pg.7 , Pg.54 , Pg.55 , Pg.63 , Pg.119 ]




SEARCH



Cast iron

Graphitisation

Iron casting

© 2024 chempedia.info