Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic acid derivatives reagents

The conversion of carboxylic acid derivatives (halides, esters and lactones, tertiary amides and lactams, nitriles) into aldehydes can be achieved with bulky aluminum hydrides (e.g. DIBAL = diisobutylaluminum hydride, lithium trialkoxyalanates). Simple addition of three equivalents of an alcohol to LiAlH, in THF solution produces those deactivated and selective reagents, e.g. lithium triisopropoxyalanate, LiAlH(OPr )j (J. Malek, 1972). [Pg.96]

In synthetic target molecules esters, lactones, amides, and lactams are the most common carboxylic acid derivatives. In order to synthesize them from carboxylic acids one has generally to produce an activated acid derivative, and an enormous variety of activating reagents is known, mostly developed for peptide syntheses (M. Bodanszky, 1976). In actual syntheses of complex esters and amides, however, only a small selection of these remedies is used, and we shall mention only generally applicable methods. The classic means of activating carboxyl groups arc the acyl azide method of Curtius and the acyl chloride method of Emil Fischer. [Pg.143]

Carboxylic acid derivatives on pyridopyrimidine rings appear to undergo normal reactions with electrophilic reagents, e.g. the 6-amide (70) is dehydrated to the 6-nitrile with phosphorus oxychloride. [Pg.210]

In addition to those methods already discussed, ketones can also be prepared from certain carboxylic acid derivatives, just as aldehydes can. Among the most useful reactions of this type is that between an acid chloride and a Gilman diorganocopper reagent such as we saw in Section 10.8. We ll discuss this subject in more detail in Section 21.4. [Pg.700]

Acid halides are among the most reactive of carboxylic acid derivatives and can be converted into many other kinds of compounds by nucleophilic acyl substitution mechanisms. The halogen can be replaced by -OH to yield an acid, by —OCOR to yield an anhydride, by -OR to yield an ester, or by -NH2 to yield an amide. In addition, the reduction of an acid halide yields a primary alcohol, and reaction with a Grignard reagent yields a tertiary alcohol. Although the reactions we ll be discussing in this section are illustrated only for acid chlorides, similar processes take place with other acid halides. [Pg.800]

The most common reactions of carboxylic acid derivatives are substitution by water (hydrolysis) to yield an acid, by an alcohol (alcoholysis) to yield an ester, by an amine (aminolysis) to yield an amide, by hydride ion to yield an alcohol (reduction), and by an organometallic reagent to yield an alcohol (Grignard reaction). [Pg.826]

When a multistep synthesis is being undertaken with other sensitive functional groups present in the molecule, milder reagents and reaction conditions may be necessary. As a result, many alternative methods for effecting interconversion of the carboxylic acid derivatives have been developed and some of the most useful reactions are considered... [Pg.243]

A Sml2-induced reductive cyclization of (V-(alkylketo)pyrroles provided an entry into medium ring 1,2-annelated pyrroles <06EJO4989>. An oxidative radical alkylation of pyrroles with xanthates promoted by triethylborane provided access to a-(pyrrol-2-yl)carboxylic acid derivatives <06TL2517>. An oxidative coupling of pyrroles promoted by a hypervalent iodine(III) reagent provided bipyrroles directly <060L2007>. [Pg.147]

Reactions of Organozinc Reagents with Acyl Halides, Anhydrides, and Other Carboxylic Acid Derivatives... [Pg.393]

The asymmetric synthesis of / -branched carboxylic acid derivatives was accomplished by conjugate addition of mixed organoaluminum reagents to optically active Arabinose-derived c -unsaturated A-acyloxazolidinones (Scheme 47). Efficient stereocontrol was achieved using different optically active bicyclic oxazolidinones, yielding (.R)- or ( -configured / -branched carboxylic acid derivatives.136a... [Pg.391]

Another titanium-based reagent for the methylenation of carbonyl compounds is that prepared from dibromomethane/zinc/titanium tetrachloride and related systems (Scheme 14.25) [48]. These systems transform a wide variety of carboxylic acid derivatives to terminal olefins in the same way as titanocene-methylidene does. [Pg.487]

A number of nonnatural amino acids were resolved into individual enantiomers on 0-9-(2,6-diisopropylphenylcarbamoyl)quinine-based CSPby Peter and coworkers [48,90,113,114] after derivatization with Sanger s reagent, chloroformates (DNZ-Cl, FMOC-Cl, Z-Cl), Boc-anhydride, or acyl chlorides (DNB-Cl, Ac-Cl, Bz-Cl). For example, the four stereoisomers of P-methylphenylalanine, P-methyltyrosine, P-methyltryptophan, and P-methyl-l,2,3,4-tetrahydroisoquinoline-3-carboxylic acid could be conveniently resolved as various A-derivatives [113]. The applicability spectrum of cinchonan carbamate CSPs comprises also P-amino carboxylic acid derivatives, which were, for example, investigated by Peter et al. [114]. A common trend in terms of elution order of DNP-derivatized P-amino acids was obeyed in the latter study On the utilized quinine carbamate-based CSP, the elution order was S before R for 2-aminobutyric acid, while it was R before S for the 3-amino acids having branched R substituents such as wo-butyl, iec-butyl, tert-butyl, cyclohexyl, or phenyl residues. [Pg.72]

It is particularly interesting, that some titanium and tantalum carbene complexes olefinate derivatives of carboxylic acids. These reagents are, moreover, much less basic than phosphorus ylides, and thus enable the olefination of strongly C-H acidic carbonyl compounds. [Pg.125]

A series of reagents have been developed which are prepared in situ from a geminal dihalide or a dithioacetal [635,730] and a transition metal complex. Titanium-based reagents of this type olefinate a broad range of carbonyl compounds, including carboxylic acid derivatives (Table 3.12), and are a practical alternative to the use of isolated carbene complexes. [Pg.129]

A less powerful complex metal hydride is Na BH4 which will reduce aldehydes and ketones only, and does not attack carboxylic acid derivatives nor does it—as Li AlH4 does—attack NO2 or C=N present in the same compound. It has the great advantage of being usable in hydroxylic solvents. A wide variety of other reagents of the MH4 , MH3OR , MHjfORlj type have been developed their relative effectiveness is related to both the nucleophilicity and size of MH4 , etc. [Pg.215]

Now we see an analogy with the LAH reduction sequence (see Section 7.11), in that this ketone intermediate also reacts with the organometallic reagent, rather more readily than the initial carboxylic acid derivative, so that this ketone cannot usually be isolated. The final product is thus a tertiary alcohol, which contains two alkyl or aryl groups from the organometallic reagent. [Pg.272]

One of the more difficult partial reductions to accomplish is the conversion of a carboxylic acid derivative to an aldehyde without over-reduction to the alcohol. Aldehydes are inherently more reactive than acids or esters so the challenge is to stop the reduction at the aldehyde stage. Several approaches have been used to achieve this objective. One is to replace some of the hydrogens in a group III hydride with more bulky groups, thus modifying reactivity by steric factors. Lithium tr i - / - b u to x y a I u m i n u m hydride is an example of this approach.42 Sodium tri-t-butoxyaluminum hydride can also be used to reduce acyl chlorides to aldehydes without over-reduction to the alcohol.43 The excellent solubility of sodium bis(2-methoxyethoxy)aluminum hydride makes it a useful reagent for selective... [Pg.267]

The present procedure provides a facile and versatile synthesis, on large scale, of a variety of pyrrole-2-carboxylic acid derivatives without necessitating the use of moisture-sensitive organometallic reagents. The use of alcohols other than ethanol in the alcoholysis reaction provides virtually any desired ester. Ammonia or aliphatic amines readily give amides in high yields, and aqueous base can be used to give the free acid. [Pg.52]

Second, titanium-based reagents are suitable for methylenation or alkylidenation of carbonyl groups of carboxylic acid derivatives such as esters and amides (Equation (7)). ... [Pg.42]

A problem inherent in metallation reactions with Grignard reagents is the poor chemos-electivity of the reactions. The most common side-reactions are the competing nucleophile addition and the reduction of the carbonyl compounds. An interesting alternative would be to use the high electrophilicity of the Mg + cation and its tendency to form a multicoordinate complex. The preformation of a Mg(II) complex with a carbonyl compound or a carboxylic acid derivative enhances the acidity of the substrate to the point where a relatively mild base can be used. [Pg.461]


See other pages where Carboxylic acid derivatives reagents is mentioned: [Pg.19]    [Pg.534]    [Pg.295]    [Pg.178]    [Pg.162]    [Pg.401]    [Pg.422]    [Pg.1335]    [Pg.215]    [Pg.129]    [Pg.312]    [Pg.207]    [Pg.248]    [Pg.178]    [Pg.468]    [Pg.487]    [Pg.75]    [Pg.295]    [Pg.304]    [Pg.295]    [Pg.280]    [Pg.322]    [Pg.340]   
See also in sourсe #XX -- [ Pg.1017 , Pg.1018 ]

See also in sourсe #XX -- [ Pg.1013 ]




SEARCH



Acid Reagents

Acidic reagents

Carboxylic acid derivates

Carboxylic acid derivatives organometallic reagents

Carboxylic acid derivatives reactions with organometallic reagents

Carboxylic acid derivs

Carboxylic acids reagents

Reaction of Organometallic Reagents with Carboxylic Acid Derivatives

© 2024 chempedia.info