Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal hydrides carbonyl compounds

The new metallic hydrides are excellent reducing agents for carbonyl compounds. These hydrides now include lithium aluminum hydride, lithium borohydride, and sodium borohydride. The last reagent may be used in either aqueous or methanolic solutions. It does not reduce esters, acids, or nitriles and, for this reason, is superior for certain selective reductions. Other groups which are unaffected by this reagent include a,/S-double bonds and hydroxyl, methoxyl, nitro, and dimethylamino groups. ... [Pg.526]

The introduction of tritium into molecules is most commonly achieved by reductive methods, including catalytic reduction by tritium gas, PH2], of olefins, catalytic reductive replacement of halogen (Cl, Br, or I) by H2, and metal pH] hydride reduction of carbonyl compounds, eg, ketones (qv) and some esters, to tritium-labeled alcohols (5). The use of tritium-labeled building blocks, eg, pH] methyl iodide and pH]-acetic anhydride, is an alternative route to the preparation of high specific activity, tritium-labeled compounds. The use of these techniques for the synthesis of radiolabeled receptor ligands, ie, dmgs and dmg analogues, has been described ia detail ia the Hterature (6,7). [Pg.438]

The key step in the reduction of a carbonyl compound by either LiAlH4 or NaBH4 is the transfer of a hydride ion from the metal to the carbonyl carbon. [Pg.464]

Rhin(bpy)3]3+ and its derivatives are able to reduce selectively NAD+ to 1,4-NADH in aqueous buffer.48-50 It is likely that a rhodium-hydride intermediate, e.g., [Rhni(bpy)2(H20)(H)]2+, acts as a hydride transfer agent in this catalytic process. This system has been coupled internally to the enzymatic reduction of carbonyl compounds using an alcohol dehydrogenase (HLADH) as an NADH-dependent enzyme (Scheme 4). The [Rhin(bpy)3]3+ derivative containing 2,2 -bipyridine-5-sulfonic acid as ligand gave the best results in terms of turnover number (46 turnovers for the metal catalyst, 101 for the cofactor), but was handicapped by slow reaction kinetics, with a maximum of five turnovers per day.50... [Pg.477]

Tributyltin hydride reduction of carbonyl compounds. The reduction of carbonyl compounds with metal hydrides can also proceed via an electron-transfer activation in analogy to the metal hydride insertion into TCNE.188 Such a notion is further supported by the following observations (a) the reaction rates are enhanced by light as well as heat 189 (b) the rate of the reduction depends strongly on the reduction potentials of ketones. For example, trifluoroacetophenone ( re<1 = —1.38 V versus SCE) is quantitatively reduced by Bu3SnH in propionitrile within 5 min, whereas the reduction of cyclohexanone (Erea — 2.4 V versus SCE) to cyclohexanol (under identical... [Pg.252]

The plausible mechanism of this ruthenium-catalyzed isomerization of allylic alcohols is shown in Scheme 15. This reaction proceeds via dehydrogenation of an allylic alcohol to the corresponding unsaturated carbonyl compound followed by re-addition of the metal hydride to the double bond. This mechanism involves dissociation of one phosphine ligand. Indeed, the replacement of two triphenylphosphines by various bidentate ligands led to a significant decrease in the reactivity.37... [Pg.78]

Asymmetric reduction of carbonyl compounds can usually be achieved either through direct catalytic hydrogenation or by metal hydride reduction. It should be mentioned here that reduction of carbonyl compounds by catalytic hydrogenation may not be chemoselective. Other co-existing functional groups such as the C=C bond may also undergo hydrogenation. [Pg.355]

One approach to enantioselective reduction of prochiral carbonyl compounds is to utilize chiral ligand-modified metal hydride reagents. In these reagents, the number of reactive hydride species is minimized in order to get high chemo-selectivity. Enantiofacial differentiation is due to the introduced chiral ligand. [Pg.356]

Alkali-immobile dye-releasing quinone compounds, 19 293-294 Alkali lignins, 15 19-20 Alkali manganate(VI) salts, 15 596 Alkali manganates(V), 15 592 Alkali-metal alkoxide catalysts, 10 491 Alkali-metal alkoxides, effects of, 14 252 Alkali-metal alkylstannonates, 24 824 Alkali-metal fluoroxenates, 17 329-330 Alkali-metal hydrides, 13 608 Alkali-metal hydroxides, carbonyl sulfide reaction with, 23 622 Alkali-metal metatungstates, 25 383 Alkali-metal perchlorates, 18 211 Alkali-metal peroxides, 16 393... [Pg.29]

Sodium dithionite is well established [ 1 ] as a powerful reducing agent under alkaline conditions. Its redox potential is close to that of sodium borohydride [2] and, in several respects, there are advantages in the use of sodium dithionite as an alternative to the metal hydrides under phase-transfer catalytic conditions, particularly in the reduction of carbonyl compounds [3],... [Pg.495]

A number of complex metal hydrides such as lithium aluminium hydride (LiAlH4, abbreviated to LAH) and sodium borohydride (NaBHj) are able to deliver hydride in such a manner that it appears to act as a nucleophile. We shall look at the nature of these reagents later under the reactions of carbonyl compounds (see Section 7.5), where we shall see that the complex metal hydride never actually produces hydride as a nucleophile, but the aluminium hydride anion has the ability to effect transfer of hydride. Hydride itself, e.g. from sodium hydride, never acts as a nucleophile owing to its small size and high charge density it always acts as a base. Nevertheless, for the purposes of understanding the transformations. [Pg.205]

This complex can also transfer hydride to another molecule of the carbonyl compound in a similar manner, and the process continues until all four hydrides have been delivered. Since all four hydrogens in the complex metal hydride are capable of being used in the reduction process, 1 mol of reducing agent reduces 4 mol of aldehyde or ketone. Finally, the last complex is decomposed by the addition of water as a proton source. [Pg.236]

The combined reaction thus involves initial formation of the iminium ion from the carbonyl compound and amine at pH 6, and this intermediate is then reduced by the complex metal hydride to give the amine. This can also he a way of making methyl-suhstituted amines via intermediate imines with formaldehyde. [Pg.246]

Allylic acetates are usually prepared by esterification from allylic alcohols. However, the corresponding alcohols are often only accessible by the fairly expensive hydride reduction of carbonyl compounds. Consequently, direct allylic functionalization of easily available olefins has been intensively investigated. Most of these reactions involve peroxides or a variety of metal salts.However, serious drawbacks of these reactions, (e.g. toxicity of some metals, stoichiometric reaction conditions, or nongenerality) may be responsible for their infrequent use for the construction of allylic alcohols or acetates. [Pg.184]

The present preparation illustrates a general and convenient method for a two-step deoxygenation of carbonyl compounds to olefins. Related procedures comprise the basic decomposition of p-toluenesulfonylhydrazones, the hydride reduction of enol ethers, enol acetates, enamines, the reduction of enol phosphates (and/or enol phosphorodiamidates) by lithium metal in ethylamine (or liquid ammonia),the reduction of enol phosphates by titanium metal... [Pg.199]

Of course, many other nontransition metal hydrides which reduce carbonyl compounds are known but there is little conclusive evidence on the mechanism of these reactions. [Pg.201]

Cobalt hydrocarbonyl, diborane, and aluminum hydrides add, I think, to all of these carbonyl compounds. Of course, there is the well known Grignard reagent and the alkyllithium additions to carbonyl compounds. Aluminum alkyls add, and we could have listed all the other alkali metal alkyls. Recent work has shown that the tin alkoxides add readily to all these derivatives, and similarly, a tin amide adds to most of these carbonyl compounds. [Pg.211]


See other pages where Metal hydrides carbonyl compounds is mentioned: [Pg.314]    [Pg.141]    [Pg.289]    [Pg.34]    [Pg.164]    [Pg.297]    [Pg.31]    [Pg.731]    [Pg.34]    [Pg.291]    [Pg.769]    [Pg.270]    [Pg.367]    [Pg.447]    [Pg.114]    [Pg.144]    [Pg.1073]    [Pg.89]    [Pg.48]    [Pg.299]    [Pg.108]    [Pg.411]    [Pg.299]    [Pg.264]    [Pg.273]    [Pg.273]    [Pg.96]    [Pg.185]    [Pg.211]    [Pg.164]    [Pg.221]   
See also in sourсe #XX -- [ Pg.514 , Pg.515 , Pg.517 ]




SEARCH



Carbonyl compounds metal hydride reduction

Carbonyl compounds metalation

Carbonyl compounds with metal hydride reagents

Hydride compounds

Metal carbonyl hydrides

Metal hydrides unsaturated carbonyl compounds

Transition metal hydrides carbonyl compounds

Transition metal hydrides unsaturated carbonyl compounds

© 2024 chempedia.info