Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl chiral

Alcohols can be synthesized by the addition of carbanions to carbonyl compounds (W.C. Still, 1976) or epoxides. Both types of reactions often produce chiral centres, and stereoselectivity is an important aspect of these reactions. [Pg.44]

Triflates of phenols are carbonylated to form aromatic esters by using PhjP[328]. The reaction is 500 times faster if dppp is used[329]. This reaction is a good preparative method for benzoates from phenols and naphthoates (473) from naphthols. Carbonylation of the bis-triflate of axially chiral 1,1 -binaphthyl-2,2 -diol (474) using dppp was claimed to give the monocarboxy-late 475(330]. However, the optically pure dicarboxylate 476 is obtained under similar conditions[331]. The use of 4.4 equiv. of a hindered amine (ethyldiisopropylamine) is crucial for the dicarbonylation. The use of more or less than 4.4 equiv. of the amine gives the monoester 475. [Pg.193]

The chiral siloxycyclopropane 106 undergoes carbonylative homocoupling to form the 4-ketopimelate derivative 108 via the palladium homoenolate 107 without racemization. The reaction is catalytic in CHCI3, but stoichiometric in benzene[93]. [Pg.540]

The enzyme is a single enantiomer of a chiral molecule and binds the coenzyme and substrate m such a way that hydride is transferred exclusively to the face of the carbonyl group that leads to (5) (+) lactic acid Reduction of pyruvic acid m the absence of an enzyme however say with sodium borohydride also gives lactic acid but as a racemic mixture containing equal quantities of the R and S enantiomers... [Pg.735]

None of the bonds to the chirality center is broken when hydroxide attacks the carbonyl group Had an 8 2 reaction occurred instead inversion of configuration at the chirality center would have taken place to give (8) (—) 1 phenylethyl alcohol... [Pg.855]

Hemiacetal formation between the carbonyl group and the C 4 hydroxyl yields the five membered furanose ring form The anomenc carbon is a new chirality center its hydroxyl group can be either cis or trans to the other hydroxyl groups of the molecule... [Pg.1033]

Ammonia reacts with the ketone carbonyl group to give an mine (C=NH) which is then reduced to the amine function of the a ammo acid Both mine formation and reduc tion are enzyme catalyzed The reduced form of nicotinamide adenine diphosphonu cleotide (NADPH) is a coenzyme and acts as a reducing agent The step m which the mine is reduced is the one m which the chirality center is introduced and gives only L glutamic acid... [Pg.1124]

In most cases, the proteia is immobilized onto y-aminopropyl sUica and covalently attached usiag a cross-linking reagent such as -carbonyl diimidazole. The tertiary stmcture or three dimensional organization of proteias are thought to be important for their activity and chiral recognition. Therefore, mobile phase conditions that cause proteia "deaaturatioa" or loss of tertiary stmcture must be avoided. [Pg.66]

Stereoselective All lations. Ben2ene is stereoselectively alkylated with chiral 4-valerolactone in the presence of aluminum chloride with 50% net inversion of configuration (32). The stereoselectivity is explained by the coordination of the Lewis acid with the carbonyl oxygen of the lactone, resulting in the typ displacement at the C—O bond. Partial racemi2ation of the substrate (incomplete inversion of configuration) results by internal... [Pg.553]

Simple olefins do not usually add well to ketenes except to ketoketenes and halogenated ketenes. Mild Lewis acids as well as bases often increase the rate of the cyclo addition. The cycloaddition of ketenes to acetylenes yields cyclobutenones. The cycloaddition of ketenes to aldehydes and ketones yields oxetanones. The reaction can also be base-cataly2ed if the reactant contains electron-poor carbonyl bonds. Optically active bases lead to chiral lactones (41—43). The dimerization of the ketene itself is the main competing reaction. This process precludes the parent compound ketene from many [2 + 2] cyclo additions. Intramolecular cycloaddition reactions of ketenes are known and have been reviewed (7). [Pg.474]

Tbe purpose of tbe bydroxyl group is to acbieve some hydrogen bonding with the nearby carbonyl group and therefore hinder the motion of the chiral center. Another way to achieve the chiral smectic Cphase is to add a chiral dopant to a smectic Chquid crystal. In order to achieve a material with fast switching times, a chiral compound with high spontaneous polarization is sometimes added to a mixture of low viscosity achiral smectic C compounds. These dopants sometimes possess Hquid crystal phases in pure form and sometimes do not. [Pg.200]

Chiral Titanium Complexes. Chiral titanium complexes are useful for the enantioselective addition of nucleophiles to carbonyl groups ... [Pg.150]

Industrial Synthetic Improvements. One significant modification of the Stembach process is the result of work by Sumitomo chemists in 1975, in which the optical resolution—reduction sequence is replaced with a more efficient asymmetric conversion of the meso-cyc. 02Lcid (13) to the optically pure i7-lactone (17) (Fig. 3) (25). The cycloacid is reacted with the optically active dihydroxyamine [2964-48-9] (23) to quantitatively yield the chiral imide [85317-83-5] (24). Diastereoselective reduction of the pro-R-carbonyl using sodium borohydride affords the optically pure hydroxyamide [85317-84-6] (25) after recrystaUization. Acid hydrolysis of the amide then yields the desired i7-lactone (17). A similar approach uses chiral alcohols to form diastereomic half-esters stereoselectivity. These are reduced and direedy converted to i7-lactone (26). In both approaches, the desired diastereomeric half-amide or half-ester is formed in excess, thus avoiding the cosdy resolution step required in the Stembach synthesis. [Pg.30]

It is generally beheved that selectivity of hydrolytic enzymes strongly depends on the proximity of the chiral center to the reacting carbonyl group, and only a few examples of successful resolutions exist for compounds that have the chiral center removed by more than three bonds. A noticeable exception to this rule is the enantioselective hydrolysis by Pseudomonasfluorescens Hpase (PEL) of racemic dithioacetal (5) that has a prochiral center four bonds away from the reactive carboxylate (24). The monoester (6) is obtained in 89% yield and 98% ee. [Pg.333]

The enzyme-catalyzed interconversion of acetaldehyde and ethanol serves to illustrate a second important feature of prochiral relationships, that ofprochiral faces. Addition of a fourth ligand, different from the three already present, to the carbonyl carbon of acetaldehyde will produce a chiral molecule. The original molecule presents to the approaching reagent two faces which bear a mirror-image relationship to one another and are therefore enantiotopic. The two faces may be classified as re (from rectus) or si (from sinister), according to the sequence rule. If the substituents viewed from a particular face appear clockwise in order of decreasing priority, then that face is re if coimter-clockwise, then si. The re and si faces of acetaldehyde are shown below. [Pg.106]

A very important relationship between stereochemistry and reactivity arises in the case of reaction at an 5 carbon adjacent to a chiral center. Using nucleophilic addition to the carbonyl group as an example, it can be seen that two diastereomeric products are possible. The stereoselectivity and predictability of such reactions are important in controlling stereochemistry in synthesis. [Pg.174]

There are a number of powerful synthetic reactions which join two trigonal carbons to form a CC single bond in a stereocontrolled way under proper reaction conditions. Included in this group are the aldol, Michael, Claisen rearrangement, ene and metalloallyl-carbonyl addition reactions. The corresponding transforms are powerfully stereosimplifying, especially when rendered enantioselective as well as diastereoselective by the use of chiral controller groups. Some examples are listed in Chart 20. [Pg.51]

Even more highly selective ketone reductions are earned out with baker s yeast [61, 62] (equations 50 and 51) Chiral dihydronicotinamides give carbonyl reductions of high enantioselectivity [63] (equation 52), and a crown ether containing a chiral 1,4-dihydropyridine moiety is also effective [64] (equation 52). [Pg.309]

The most valuable characteristic of the Patemo-Buchi reaction is the ability to set multiple stereocenters in one reaction and the development of diastereocontrolled reactions has been a major theme of research concerning this reaction. Stereocontrol can be envisioned to spring from either the carbonyl or the alkene and be controlled by either the substrate directly or by a chiral auxiliary. Little success has been achieved in substrate-induced selection by the carbonyl the most successful results were produced by... [Pg.46]


See other pages where Carbonyl chiral is mentioned: [Pg.191]    [Pg.383]    [Pg.191]    [Pg.383]    [Pg.20]    [Pg.46]    [Pg.66]    [Pg.106]    [Pg.299]    [Pg.52]    [Pg.438]    [Pg.456]    [Pg.512]    [Pg.173]    [Pg.247]    [Pg.380]    [Pg.178]    [Pg.181]    [Pg.183]    [Pg.348]    [Pg.36]    [Pg.156]    [Pg.110]    [Pg.569]    [Pg.108]    [Pg.47]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



1.3- Dioxanes chiral carbonyl equivalent

Addition of Chiral Enolates to Achiral Carbonyl Compounds

Carbonyl chiral smectics

Carbonyl compounds chiral acyclic

Carbonyl compounds chiral auxiliaries

Carbonyl compounds, a-alkoxy chiral

Carbonyl reduction chiral compound stereoselective synthesis

Chiral Isocyanides, Carboxylic Acids and Carbonyl Compounds

Chiral amines from carbonyl derivatives

Chiral carbonyl compounds

Chiral carbonyl compounds, electrophilic

Chiral chromium carbonyl complex

Chiral ligands alkyl halide carbonylation

Conformer chiral carbonyls

Diastereoselection with Chiral Carbonyl Substrates

Hydroxy carbonyl compounds chiral

Reactions of Achiral Carbonyl Dienophiles with Chiral Heteroatom-. substituted Dienes

Reactions of Chiral Carbonyl Dienophiles with Achiral Dienes

Reactions with Chiral Non-Racemic Carbonyl Compounds

Recent Michael-Type Reactions Using Chirally Modified ,-Substituted Carbonyl Compounds

Selectivity in the Reduction of Carbonyl Derivatives Containing a Chiral Carbon

Stereoelectronics reactions of chiral carbonyl compounds with

Substrate Control with Chiral Carbonyl Compounds

Titanium reagents, chirally modified carbonyl compounds

© 2024 chempedia.info