Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonates Cyclopropanation Coupling

The results of the carbon-proton coupling constants of some of these monosubstituted cyclopropanes are given in Table 7. Long-range carbon-proton coupling constants in monosubstituted cyclopropanes are such that they may be construed either as two bond or three bond coupling in some cases the latter have been found to be larger. Cyclopropane itself shows Jaim — 2 55 Hz data for a number of monosubstituted derivatives are shown in Table 8. [Pg.120]

TABLE 7. Carbon-proton coupling constants in monosubsti tuted cyclopropanes (1) (in Hz)... [Pg.120]

On extending the study to cyclopropane, the relationship was found no longer to hold, probably because of the unsaturated character associated with the three-membered ring. A semi-empirical linear relationship between the percentage s-character of a C—H bond and the carbon-hydrogen coupling constant (Ji3c h)... [Pg.2]

The formation of alkyl shifted products H and 14 can be explained in terms of the formation of endo-intermediate 21 formed by endo attack of bromine to 2 (Scheme 4). The determined endo-configuration of the bromine atom at the bridge carbon is also in agreement with endo-attack. Endo-Intermediate 21 is probably also responsible for the formation of cyclopropane products 12 and 15. The existence of cyclopropane ring in 12 and 15 has been determined by and 13c NMR chemical shifts and especially by analysis of cyclopropane J cH coupling constants (168 and 181 Hz). On the basis of the symmetry in the molecule 12 we have distinguished easily between isomers 12 and 15. Aryl and alkyl shift products IQ, H, and 14 contain benzylic and allylic bromine atoms which can be hydrolized easily on column material. [Pg.70]

Both the 13C chemical shifts and the F—C coupling constants for CF2 carbons are quite characteristic in value, as can be seen from the examples in Scheme 4.9. A review article on 13C NMR spectra of fluorinated cyclopropanes has recently appeared.3... [Pg.118]

It is supposed that the nickel enolate intermediate 157 reacts with electrophiles rather than with protons. The successful use of trimethylsilyl-sub-stituted amines (Scheme 57) permits a new carbon-carbon bond to be formed between 157 and electrophiles such as benzaldehyde and ethyl acrylate. The adduct 158 is obtained stereoselectively only by mixing nickel tetracarbonyl, the gem-dibromocyclopropane 150, dimethyl (trimethylsilyl) amine, and an electrophile [82]. gem-Functionalization on a cyclopropane ring carbon atom is attained in this four-component coupling reaction. Phenyl trimethyl silylsulfide serves as an excellent nucleophile to yield the thiol ester, which is in sharp contrast to the formation of a complicated product mixture starting from thiols instead of the silylsulfide [81]. (Scheme 58)... [Pg.132]

The GIAO-MP2/TZP calculated 13C NMR chemical shifts of the cyclopropylidene substituted dienyl cation 27 show for almost all carbon positions larger deviations from the experimental shifts than the other cations 22-26. The GIAO-MP2/TZP method overestimates the influence of cr-delocalization of the positive charge into the cyclopropane subunit on the chemical shifts. Electron correlation corrections for cyclopropylidenemethyl cations such as 27 and 28 are too large to be adequately described by the GIAO-MP2 perturbation theory method and higher hierarchies of approximations such as coupled cluster models are required to rectify the problem. [Pg.137]

In contrast to silylcarbenes, the analogous stannylcarbenes 2p are not stable, which explains why they have attracted little interest. Their instability is probably due to the long carbon-tin bond, which does not allow sufficient steric protection of the carbene center. Their reactivity seems to be quite similar to that of stable (phosphino)(silyl)carbenes Cyclopropanation reactions have been reported with methyl acrylate as well as coupling reactions with tert-butyl isonitrile.73... [Pg.201]

While a large number of studies have been reported for conjugate addition and Sn2 alkylation reactions, the mechanisms of many important organocopper-promoted reactions have not been discussed. These include substitution on sp carbons, acylation with acyl halides [168], additions to carbonyl compounds, oxidative couplings [169], nucleophilic opening of electrophilic cyclopropanes [170], and the Kocienski reaction [171]. The chemistry of organocopper(II) species has rarely been studied experimentally [172-174], nor theoretically, save for some trapping experiments on the reaction of alkyl radicals with Cu(I) species in aqueous solution [175]. [Pg.338]

The Simmons-Smith reaction " and its variants are widely used for the stereospecific synthesis of cyclopropane compounds. The methodology involves the use of copper-treated zinc metal (the zinc-copper couple) with diiodomethane to add methylene to a carbon-carbon double bond. Alternative use of diazomethane in catalytic reactions does not offer the same synthetic advantages and is usually avoided because of safety considerations. As significant as is the Simmons-Smith reaction for cyclopropane formation, its employment for organic synthesis was markedly advanced by the discovery that allylic and homoallylic hydroxyl groups accelerate and exert stereochemical control over cyclopropanation of alkenes (e.g, Eq. 21), and this acceleration has been explained by a transition state model... [Pg.571]

In 1977, an article from the authors laboratories [9] reported an TiCV mediated coupling reaction of 1-alkoxy-l-siloxy-cyclopropane with aldehydes (Scheme 1), in which the intermediate formation of a titanium homoenolate (path b) was postulated instead of a then-more-likely Friedel-Crafts-like mechanism (path a). This finding some years later led to the isolation of the first stable metal homoenolate [10] that exhibits considerable nucleophilic reactivity toward (external) electrophiles. Although the metal-carbon bond in this titanium complex is essentially covalent, such titanium species underwent ready nucleophilic addition onto carbonyl compounds to give 4-hydroxy esters in good yield. Since then a number of characterizable metal homoenolates have been prepared from siloxycyclopropanes [11], The repertoire of metal homoenolate reactions now covers most of the standard reaction types ranging from simple... [Pg.4]


See other pages where Carbonates Cyclopropanation Coupling is mentioned: [Pg.186]    [Pg.212]    [Pg.105]    [Pg.259]    [Pg.2448]    [Pg.84]    [Pg.8]    [Pg.74]    [Pg.338]    [Pg.181]    [Pg.539]    [Pg.18]    [Pg.612]    [Pg.53]    [Pg.11]    [Pg.172]    [Pg.336]    [Pg.96]    [Pg.268]    [Pg.230]    [Pg.274]    [Pg.279]    [Pg.81]    [Pg.229]    [Pg.288]    [Pg.695]    [Pg.246]    [Pg.247]    [Pg.1]    [Pg.23]    [Pg.22]    [Pg.451]    [Pg.824]   


SEARCH



Carbon coupling

Cyclopropanes couple

© 2024 chempedia.info