Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonaceous chondrites chemistry

What is important in the context of chondrite chemistry is the fact that the probable presence in the protosolar nebula of dust particles and complex organic molecules is evidenced. This does not mean that all the organic matter detected in carbonaceous chondrites is necessarily molecules still present in the protosolar nebula. Readers interested in details of the formation of the solar system and the accretion phenomena will find a lot of information in the papers by Larimer 14) and Cameron 1S). [Pg.90]

As we will see, some anomalies in the isotopic composition of carbon, hydrogen and oxygen can be explained on the basis of this assumption, and we will start the discussion with the deuterium-rich matter in carbonaceous chondrites. This deuterium-rich matter is essentially present as complex macromolecules 70 73 96 97). The carbon in these samples is essentially normal 76,98). For some polymer-type fractions, the deuterium content is up to 32 times higher than the galactic value (D/H 2 x 10s in the number of atoms per cubic centimeter). High deuterium enrichments are known in interstellar molecules and the mechanism of this enrichment is fully understood. For an excellent review dealing with interstellar chemistry, see the paper by Winnewisser 99) and the previously mentioned book by Duley and Williams 13). [Pg.108]

Amino acids have probably formed in different places of the Solar system through processes independent of living organisms as shown by their occurrence in carbonaceous chondrites, a particular class of meteorites. Among these processes, only a particular subset of them can be considered to be truly prebiotic. It is the processes that make amino acids available in environments capable of developing a complex chemistry compatible, or at least presumed to be compatible, with the emergence of life. [Pg.1374]

Based on the bulk chemistry, IDPs are divided into two groups (i) micrometer-sized chondritic particles and (ii) micrometer-sized nonchondritic particles. A particle is defined as chondritic when magnesium, aluminum, silicon, sulfur, calcium, titanium, chromium, manganese, iron, and nickel occur in relative proportions similar (within a factor of 2) to their solar element abundances, as represented by the Cl carbonaceous chondrite composition (Brownlee et al., 1976). Chondritic IDPs differ significantly in form and texture from the components of known carbonaceous chondrite groups and are highly enriched in carbon relative to the most carbon-rich Cl carbonaceous chondrites (Rietmeijer, 1992 Thomas et al., 1996 Rietmeijer, 1998, 2002). [Pg.104]

The concentrations of four typical moderately volatile elements—manganese, sodium, selenium, and zinc—in the various classes of chondritic meteorites are shown in Figure 12, where elements are normalized to magnesium and CI-chondrites. Again there is excellent agreement between solar abundances and Cl-meteorites. A characteristic feature of the chemistry of carbonaceous chondrites is the simultaneous depletion of sodium and manganese in all types of carbonaceous chondrites, except Cl. Ordinary and enstatite chondrites are not or only slightly... [Pg.730]

As regards the rock-forming elements, the bulk composition of the Earth is basically chondritic (i.e., solar) with approximately equal abundances of magnesium, sihcon, and iron atoms. In detail, however, there are some variations in chemistry among chondritic meteorites, and from a detailed comparison with meteorites it is concluded that the bulk Earth composition has similarities with the chemical composition group of carbonaceous chondrites. [Pg.738]

There are also some differences between the chemistry of carbonaceous chondrites and the Earth. [Pg.738]

PAHs are believed to be a major class of carbon-bearing molecules in the interstellar medium 1138], They are found in carbonaceous chondrites tliat have fallen to Earth (see section 4.2.1) and in interplanetary dust particles [28]. Shock and Schulte [139] suggested that amino acids could be syntliesized by aqueous alteration of precursor PAHs in carbonaceous chondrites. We directed attention to shock reaction of PAHs [135,140,141], and conducted shock reactions using benzene, tire simplest aromatic hydrocarbon, as a starting material to simulate possible reactions occurring in interstellar space. Furtliermore, we examined the mechanism of shock reaction on the basis of quantum chemistry and discussed the implication for cosmocheniistiy. [Pg.188]

Extraterrestrial Organic Chemistry as Recorded in Carbonaceous Chondrites... [Pg.246]

Nahir, T. M. and G A. Dawson (1987) Oxidation of sulfur dioxide by ozone in highly dispersed water droplets. Journal of Atmospheric Chemistry 5, 373-383 Nakamura, T. (2005) Post-hydration thermal metamorphism of carbonaceous chondrites. [Pg.662]


See other pages where Carbonaceous chondrites chemistry is mentioned: [Pg.426]    [Pg.367]    [Pg.436]    [Pg.411]    [Pg.86]    [Pg.583]    [Pg.143]    [Pg.154]    [Pg.411]    [Pg.223]    [Pg.732]    [Pg.737]    [Pg.28]    [Pg.33]    [Pg.45]    [Pg.248]    [Pg.288]    [Pg.12]    [Pg.283]    [Pg.22]   


SEARCH



Carbonaceous

Carbonaceous chondrites

Chondrites

© 2024 chempedia.info