Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon sulfides 4+2 cycloaddition reactions

Among the carbonylative cycloaddition reactions, the Pauson-Khand (P-K) reaction, in which an alkyne, an alkene, and carbon monoxide are condensed in a formal [2+2+1] cycloaddition to form cyclopentenones, has attracted considerable attention [3]. Significant progress in this reaction has been made in this decade. In the past, a stoichiometric amount of Co2(CO)8 was used as the source of CO. Various additive promoters, such as amines, amine N-oxides, phosphanes, ethers, and sulfides, have been developed thus far for a stoichiometric P-K reaction to proceed under milder reaction conditions. Other transition-metal carbonyl complexes, such as Fe(CO)4(acetone), W(CO)5(tetrahydrofuran), W(CO)5F, Cp2Mo2(CO)4, where Cp is cyclopentadienyl, and Mo(CO)6, are also used as the source of CO in place of Co2(CO)8. There has been significant interest in developing catalytic variants of the P-K reaction. Rautenstrauch et al. [4] reported the first catalytic P-K reaction in which alkenes are limited to reactive alkenes, such as ethylene and norbornene. Since 1994 when Jeong et al. [5] reported the first catalytic intramolecular P-K reaction, most attention has been focused on the modification of the cobalt catalytic system [3]. Recently, other transition-metal complexes, such as Ti [6], Rh [7], and Ir complexes [8], have been found to be active for intramolecular P-K reactions. [Pg.175]

The 1,3-dipolar systems involved in the cycloaddition reaction with cumulenes include azides, nitrile oxides, nitrile imines, nitrones, azomethine imines and diazo compounds. However, some 1,3-dipolar systems are also generated in the reaction of precursors with catalysts. Examples include the reaction of alkylene oxides, alkylene sulfldes and alkylene carbonates with heterocumulenes. Carbon cumulenes also participate as 1,3-dipols in [3+2] cycloaddifion reactions. Examples include thiocarbonyl sulfides, R2C=S=S, and l-aza-2-azoniaallenes. [Pg.10]

The cumulenes discussed in this book are subdivided into carbon- and noncarbon cumulenes, and the 1-carbon cumulenes (sulfines, sulfenes, thiocarbonyl S -imides and thiocar-bonyl S -sulfides) are excellent dipolar species. The 2-carbon or the center-carbon cumulenes (carbon dioxide and carbon sulfides) are less reactive but their imides (isocyanates, isothiocyantes and carbodiimides) readily participate in many of the discussed reactions. The 1,2-dicarbon cumulenes (ketenes, thioketenes and ketenimenes) similarly participate in cycloaddition reactions, as well as the more exotic 1,2-dicarbon cumulenes (1-silaalene, 1-phosphaallene and other metal allenes). In contrast, 1,3-dicarbon cumulenes are only... [Pg.564]

Oxazin-4-ones and -thiazin-4-ones are well represented in the chemical literature. Thiazin-4-ones can be synthesized from 1,3-oxazinium salts by the action of hydrogen sulfide and potassium carbonate (81H(15)85l) and oxazin-4-ones are obtained by cycloadditions between isocyanates and ketenes (Scheme 73), or alkynes (Scheme 74), or between nitriles and acylketenes (Scheme 75). Similarly diketene is often used and affords oxazin-4-ones by its reactions with imidates and cyanamides (Scheme 76) (80H(14)1333>. [Pg.1022]

Aromatic and aliphatic acyl isocyanates participate in a similar range of [4 + 2] cycloadditions although [2 + 2] and simple addition reactions often are observed. The acyl isocyanate substituents may determine or alter the observed course of the reaction, and the substituent effects have been detailed in extensive reviews.7,71 Observed [4 + 2] cycloadditions of acyl isocyanates with selected olefins, p-quinones, allenes, the carbon-carbon double bond of ketenes, electron-rich acetylenes, imines, dianils, ethy-lenediimines, enamines, enol ethers, ketene acetals, carbodiimides, azirines, and vinyl sulfides have been described.7 0 The reaction of aromatic acyl isocyanates with carbodiimides is not a simple, direct [4 + 2] cycloaddition but proceeds by a kinetic [2 + 2] cycloaddition followed by a subsequent rearrangement to provide the observed [4 + 2] cycloadduct [Eq. (40)].97... [Pg.139]


See other pages where Carbon sulfides 4+2 cycloaddition reactions is mentioned: [Pg.290]    [Pg.290]    [Pg.824]    [Pg.103]    [Pg.205]    [Pg.272]    [Pg.500]    [Pg.175]    [Pg.105]    [Pg.86]    [Pg.7]    [Pg.4]    [Pg.69]    [Pg.619]    [Pg.190]    [Pg.119]    [Pg.987]    [Pg.318]    [Pg.987]    [Pg.332]    [Pg.21]    [Pg.521]    [Pg.318]    [Pg.232]    [Pg.257]    [Pg.839]    [Pg.455]    [Pg.261]   


SEARCH



Carbon cycloaddition

Carbon cycloadditions

Carbon sulfides

Carbon sulfids

Carbonates 3 + 2] cycloaddition reactions

© 2024 chempedia.info