Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon aldonic acids

Since a six-carbon aldonic acid contains —OH groups in the y- and 8-posi-tions, we would expect it to form a lactone under acidic conditions (Sec. 20.15). This occurs, the y-lactone generally being the more stable product. It is the lactone that is actually reduced to an aldose in the last step of a Kiliani-Fischer synthesis. [Pg.1079]

Aldol condensation of 2,2-diethyl-l,3-dioxolan-4-one lithium or zirconium enolates with aldehydo sugars has afforded higher carbon aldonic acid derivatives, e.g. 1. The synthesis of L-ribono-1,4-lactone has been achieved from d-isoascorbic acid by way of the tetrose and pentitol derivatives 2 and 3 and the d-ribonolactone derivative 4 has been efficiently epimerized to the L-lyxonolactone 5 (Scheme 1). A selective i yn-epoxidation of racemic 2-0-benzyl-4-alkenamides followed by hydrolysis has afforded 3-deoxy-pentono-1,4-lactones. [Pg.203]

Aldonic acids are divided into aldotrionic acid, aldotetronic acids, aldopentonic acids, aldohexonic acids, etc., according to the number of carbon atoms in the chain. The names of individual compounds of this type are formed by replacing the ending -ose of the systematic or trivial name of the aldose by -onic acid . [Pg.103]

Attack of the OH radical on carbohydrates of low molecular mass gives rise to a variety of products. Indeed, the reaction of radiolytically-generated OH radical with lower hexose sugars produces lower saccharides (for di- and higher saccharide species), uronic and aldonic acids, and 3-, 2- and 1-carbon aldehydic fragments, e.g. [Pg.5]

There are three possible classes of sugar acids which may be produced by the oxidation of monosaccharides (Figure 9.11). The aldonic acids are produced from aldoses when the aldehyde group at carbon 1 is oxidised to a carboxylic acid. If, however, the aldehyde group remains intact and only a primary alcohol group (usually at carbon 6 in the case of hexoses) is oxidised then a uronic acid is formed. Both aldonic and uronic acids occur in nature as intermediates in... [Pg.316]

Among the classic methods for the extension of the aldose chain by one carbon atom from the reducing end [9J, the Kiliani-Fischer cyanohydrin synthesis [10] is a milestone in carbohydrate chemistry. However after 110 years from discovery and numerous applications [11], including the preparation of carbon and hydrogen isotopically labeled compounds for mechanistic and structural studies [12], there are still several drawbacks that make the method impractical. These are the low and variable degree of selectivity and the harsh reaction conditions that are required to reveal the aldose from either the aldonic acid or directly from the cyanohydrin. Synthetic applications that have appeared in recent times confirmed these limitations. For instance, a quite low selectivity was registered [13] in the addition of the cyanide ion to the D-ga/acfo-hexodialdo-l,5-pyranose derivative 1... [Pg.174]

So far only a table of the 13C chemical shifts of aldonic acid salts and aldonolactones has been published in the literature (Table 5.20, [696]). The carbons of the carboxylate ion groups of all D-aldonic acid salts resonate at 180 + 0.7 ppm. Upon /-lactone formation an upfield shift for C-l and a downfield shift for the /-carbon is observed throughout. [Pg.397]

Comparable to the situation for the sialic acid and KDO lyases (vide supra), sets of stereochemically complementary pyruvate lyases are known, e,g. in Pseudomonas strains, which act on related 2-keto-3-deoxy-aldonic acids [112]. The enzymes cleaving six-carbon sugar acid phosphates—the KdgA and 2-keto-3-deoxy-6-phospho-D-galactonate (20) aldolases (KDPGal aldolase EC 4.1.2.21) [139] — are typified as class I enzymes, whereas those acting on non-phosphorylated five-carbon substrates — 2-keto-3-deoxy-L-arabonate (21) (KDAra aldolase EC 4.1.2,18) [140, 141] and 2-keto-3-deoxy-D-xylonate (22)... [Pg.118]

All the aldonic acids and their lactones obtained on oxidation of the aldohexoses are optically active. The presence of a carboxyl group at one end of the carbon chain and a CH2OH at the other precludes the existence of meso forms. [Pg.713]

P. C. C. Smits, B. F. M. Kuster, K. Van der Wiele, and H. S. Van der Baan, The selective oxidation of aldoses and aldonic acids to 2-ketoaldonic acids with lead-modified platinum-on-carbon catalysts, Carbohydr. Res., 153 (1986) 227-235. [Pg.294]

In perchloric acid, hexoses and pentoses are oxidized by Ce(IV) via formation of two complex intermediates. The first is partly oxidized following Michaelis-Menten kinetics and partly dissociated to the second, which is oxidized more slowly than the former.180 The first step in the oxidation of aldoses by Tl(III) in the same medium involves the C-l-C-2 cleavage of the aldehydo form of the sugar. Thus, D-glucose gives D-arabinose and formic acid. With an excess of oxidant the final product is carbon dioxide.181 In the presence of a catalytic amount of sulfuric acid in acetic acid, Tl(III) oxidizes maltose and lactose to the corresponding disaccharide aldonic acids. The reaction showed activation enthalpies and enthropies characteristic of second-order reactions.182... [Pg.352]

Monosaccharides can be oxidized at the aldehyde carbon to give carboxylic acids called aldonic acids. Oxidation at both ends of the carbon chain gives aldaric acids. Reduction of the carbonyl group to an alcohol gives polyols called alditols. The -OH groups in sugars, like those in simpler alcohols, can be esterified or etherified. [Pg.291]

Mode of synthesis A. cyanohydrin, by way of 2-nmino-2-deoxy-aldonic acid B. scission of sugar derivative epoxide with ammonia C. interconversion of hexosamine series D. hemihydrogenation of a-amino nitrile466 E. rearrangement of ketosyl-amine F. Removal of last carbon atom of hexosamine G. Hydrazinolysis (with inversion) of 2-0-tosyl-pentose. 6 Physical constants taken from this reference. c Derivatives (only) isolated. [Pg.225]


See other pages where Carbon aldonic acids is mentioned: [Pg.60]    [Pg.269]    [Pg.87]    [Pg.297]    [Pg.297]    [Pg.303]    [Pg.119]    [Pg.125]    [Pg.22]    [Pg.375]    [Pg.243]    [Pg.119]    [Pg.125]    [Pg.84]    [Pg.88]    [Pg.205]    [Pg.152]    [Pg.201]    [Pg.203]    [Pg.204]    [Pg.205]    [Pg.205]    [Pg.208]    [Pg.210]    [Pg.315]    [Pg.315]    [Pg.329]    [Pg.332]    [Pg.340]    [Pg.73]    [Pg.118]    [Pg.250]    [Pg.190]    [Pg.196]    [Pg.196]    [Pg.197]   
See also in sourсe #XX -- [ Pg.41 , Pg.63 ]




SEARCH



Acids aldone

Aldonate

Aldonic acids

© 2024 chempedia.info