Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbenes diazocarbonyl compounds

Diazoester aziridinations may be carried out in ionic liquids [39]. Other carbene equivalents have been investigated in aziridination reactions, though not to the same extent as diazocarbonyl compounds. Dibromo(tert-butyldimethylsilyl)me-thyllithium, for example, aziridinates N-arylimines to give l-bromo-2-aryl-3-silyla-ziridines these compounds function as useful synthetic intermediates, reacting... [Pg.131]

Based on a detailed investigation, it was concluded that the exceptional ability of the molybdenum compounds to promote cyclopropanation of electron-poor alkenes is not caused by intermediate nucleophilic metal carbenes, as one might assume at first glance. Rather, they seem to interfere with the reaction sequence of the uncatalyzed formation of 2-pyrazolines (Scheme 18) by preventing the 1-pyrazoline - 2-pyrazoline tautomerization from occurring. Thereby, the 1-pyrazoline has the opportunity to decompose purely thermally to cyclopropanes and formal vinylic C—H insertion products. This assumption is supported by the following facts a) Neither Mo(CO)6 nor Mo2(OAc)4 influence the rate of [3 + 2] cycloaddition of the diazocarbonyl compound to the alkene. b) Decomposition of ethyl diazoacetate is only weakly accelerated by the molybdenum compounds, c) The latter do not affect the decomposition rate of and product distribution from independently synthesized, representative 1-pyrazolines, and 2-pyrazolines are not at all decomposed in their presence at the given reaction temperature. [Pg.128]

Interaction of an electrophilic carbene or carbenoid with R—S—R compounds often results in the formation of sulfonium ylides. If the carbene substituents are suited to effectively stabilize a negative charge, these ylides are likely to be isolable otherwiese, their intermediary occurence may become evident from products of further transformation. Ando 152 b) has given an informative review on sulfonium ylide chemistry, including their formation by photochemical or copper-catalyzed decomposition of diazocarbonyl compounds. More recent examples, including the generation and reactions of ylides obtained by metal-catalyzed decomposition of diazo compounds in the presence of thiophenes (Sect. 4.2), allyl sulfides and allyl dithioketals (Sect. 2.3.4) have already been presented. [Pg.211]

Transition metal-catalyzed reactions of ct-diazocarbonyl compounds proceed via electrophilic Fischer-type carbene complexes. Consequently, when cr-diazoketone 341 was treated, at room temperature, with catalytic amounts of [ RhiOAcbh, it gave the formation of a single NH insertion product, which was assigned to the enol stmcture 342. At room temperature, in both solid state and in solution, 342 tautomerizes to give the expected 1-oxoperhydropyr-rolo[l,2-c]oxazole derivative 343 (Scheme 50) <1997TA2001>. [Pg.89]

Table 4.4. Intramolecular 1,4-C-H insertions of electrophilic carbene complexes generated from diazocarbonyl compounds. Table 4.4. Intramolecular 1,4-C-H insertions of electrophilic carbene complexes generated from diazocarbonyl compounds.
Ylide formation, and hence X-H bond insertion, generally proceeds faster than C-H bond insertion or cyclopropanation [1176], 1,2-C-H insertion can, however, compete efficiently with X-H bond insertion [1177]. One problem occasionally encountered in transition metal-catalyzed X-H bond insertion is the deactivation of the (electrophilic) catalyst L M by the substrate RXH. The formation of the intermediate carbene complex requires nucleophilic addition of a carbene precursor (e.g. a diazocarbonyl compound) to the complex Lj,M. Other nucleophiles present in the reaction mixture can compete efficiently with the carbene precursor, or even lead to stable, catalytically inactive adducts L M-XR. For this reason carbene X-H bond insertion with substrates which might form a stable complex with the catalyst (e.g. amines, imidazole derivatives, thiols) often require larger amounts of catalyst and high reaction temperatures. [Pg.194]

Table 4.19. C-O Bond insertion reactions of acceptor-substituted carbene eomplexes generated from diazocarbonyl compounds. Table 4.19. C-O Bond insertion reactions of acceptor-substituted carbene eomplexes generated from diazocarbonyl compounds.
A density functional study has been made of the competition between Wolff rearrangement and [1,2]-H shift in /S-oxy-a-diazocarbonyl compounds. Silver-catalysed decomposition of a-diazoketones (88 n = 0), derived from A-tosyl a-amino acids in methanol, gave rise to mixtures of products of Wolff rearrangement (89) and direct insertion of the carbene into the NH bond (90). The -amino acid derived species (88 n = 1) gave rise to products of Wolff rearrangement. [Pg.264]

Carbonyl ylides can be viewed as an adduct between a carbonyl group and a carbene and, in fact, some ylides have been prepared this way (see above). The application of carbonyl ylides to the synthesis of complex natural products has been greatly advanced by the finding that stabilized carbenoids can be generated by the decomposition of ot-diazocarbonyl compounds with copper and rhodium complexes. The metallocarbenoids formed by this method are highly electrophilic on carbon and readily add nucleophiles such as the oxygen of many carbonyl derivatives to form carbonyl ylides. This type of reaction is in fact quite old with the first report being the addition of diazomalonate and benzaldehyde (33,34). [Pg.269]

By 1960, there was recognition that copper salts could cause the loss of dinitrogen from diazocarbonyl compounds with addition of the resulting carbene intermediate to a carbon-carbon double bond to form a cyclopropane product. That this reaction, first reported by G. Stork in 1961 (Eq. 6), could occur in an intramolecular fashion and thus avoid the formation of isomers, ushered in the first significant synthetic... [Pg.565]

Diazocarbonyl compounds are optimum for these transformations, and they may be readily prepared by a variety of methods. The use of iodonium ylides (17) has also been developed, " but they exhibit no obvious advantage for selectivity in carbene-transfer reactions. Enantioselection is much higher with diazoacetates than with diazoacetoacetates (18). [Pg.567]

Carbene delivery in catalytic reactions remains a challenge. Although diazocarbonyl compounds are relatively safe, and numerous commercial processes have used and continue to employ these materials, methods for diazo transfer using azides are of concern, and cost-effective alternatives are not evident. Also elusive are structures that could deliver stabilized carbenes, not unlike those of Fischer carbenes, in catalytic processes. [Pg.586]

Ethers, sulfides, amines, carbonyl compounds, and imines are among the frequently encountered Lewis bases in the ylide formation from such metal carbene complex. The metal carbene in the ylide formation can be divided into stable Fisher carbene complex and unstable reactive metal carbene intermediates. The reaction of the former is thus stoichiometric and the latter is usually a transition metal complex-catalyzed reaction of a-diazocarbonyl compounds. The decomposition of a-diazocarbonyl compounds with catalytic transition metal complex has been the most widely used approach to generate reactive metal carbenes. For compressive reviews, see Refs 1,1a. [Pg.151]

Recent study on sulfonium ylide [2,3]-sigmatropic rearrangement has been focused on the development of new catalytic systems, including new catalysts and alternative carbene precursor other than commonly used a-diazocarbonyl compounds. Besides the most commonly used Cu(i) and Rh(ii) catalysts, Fe com-... [Pg.165]

For a review of the intramolecular insertions of carbenes or carbenoids generated from diazocarbonyl compounds, sec Burke Grieco Org. React. 1979,26, 361-475. [Pg.604]

Diazocarbonyl compounds, especially diazo ketones and diazo esters [19], are the most suitable substrates for metal carbene transformations catalyzed by Cu or Rh compounds. Diazoalkanes are less useful owing to more pronounced carbene dimer formation that competes with, for example, cyclopropanation [7]. This competing reaction occurs by electrophilic addition of the metal-stabilized carbocation to the diazo compound followed by dinitrogen loss and formation of the alkene product that occurs with regeneration of the catalytically active metal complex (Eq. 5.5) [201. [Pg.194]

Any pair of the three bonds in the cyclopropane ring such as 35a could now be disconnected but none is very favourable. We should much rather use a diazocarbonyl compound such as 42 to make the carbene. That will mean chain extension after cyclopropane formation. [Pg.282]

We showed you the formation of a carbene from diazomethane to illustrate how this reaction was different from the (ionic) methylation of carboxylic acids. But this is not a very practical way of generating carbenes, not least because of the explosive nature of diazoalkanes. However, diazocarbonyl compounds are a different matter. [Pg.1056]

They are much more stable, because the electron-withdrawing carbonyl group stabilizes the diazo dipole, and are very useful sources of carbenes carrying a carbonyl substituent. There are two main ways of making diazocarbonyl compounds ... [Pg.1056]

Diazocarbonyl compounds can be decomposed to carbenes by heat or light. The formation of very stable gaseous nitrogen compensates for the formation of the unstable carbene. [Pg.1057]

Type of carbene X Method of formation metal (rhodium or copperj-catalysed decomposition of diazocarbonyl compound... [Pg.1059]

In consideration of conceivable strategies for the more direct construction of these derivatives, nitriles can be regarded as simple starting materials with which the 3+2 cycloaddition of acylcarbenes would, in a formal sense, provide the desired oxazoles. Oxazoles, in fact, have previously been obtained by the reaction of diazocarbonyl compounds with nitriles through the use of boron trifluoride etherate as a Lewis acid promoter. Other methods for attaining oxazoles involve thermal, photochemical, or metal-catalyzed conditions.12 Several recent studies have indicated that many types of rhodium-catalyzed reactions of diazocarbonyl compounds proceed via formation of electrophilic rhodium carbene complexes as key intermediates rather than free carbenes or other types of reactive intermediates.13 If this postulate holds for the reactions described here, then the mechanism outlined in Scheme 2 may be proposed, in which the carbene complex 3 and the adduct 4 are formed as intermediates.14... [Pg.235]

Catalysts include copper pyrazolylborates (TpJCutQHt), Ru11 porphyrins, and Rh11 carboxylates.98 Metal carbene intermediates are likely such species are also present in the ruthenium-catalyzed stereoselective coupling of a-diazocarbonyl compounds 99... [Pg.1269]

When the carbene and amine centers are separated by a three-carbon chain, carbene insertion into the N—H bond results in the formation of pyrrolidine derivatives. Both a-diazocarbonyl compounds 58 and a-diazo jS-keto ester 59 give, under the action of Rh2(OAc)4, products of carbenoid insertion into the amide N — H bonds in near quantitative yields. [Pg.107]


See other pages where Carbenes diazocarbonyl compounds is mentioned: [Pg.363]    [Pg.210]    [Pg.88]    [Pg.202]    [Pg.241]    [Pg.25]    [Pg.207]    [Pg.218]    [Pg.565]    [Pg.152]    [Pg.165]    [Pg.952]    [Pg.340]    [Pg.18]    [Pg.75]    [Pg.804]    [Pg.804]    [Pg.181]    [Pg.200]    [Pg.202]    [Pg.794]   
See also in sourсe #XX -- [ Pg.578 ]




SEARCH



Carbene compounds

Diazocarbonyl

Diazocarbonyl compounds carbenes from

Diazocarbonyls

© 2024 chempedia.info