Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbene Complexes from Diazo Compounds

Diazo compounds, with or without metal catalysis, are well-known sources of carbenes. For synthetic purposes a metal catalyst is used. The diazo compounds employed are usually a- to an electron-withdrawing group, such as an ester or a ketone, for stability. In the early days, copper powder was the catalyst of choice, but now salts of rhodium are favoured. The chemistry that results looks very like the chemistry of free carbenes, involving cyclopropanation of alkenes, cyclopropenation of alkynes, C-H insertion reactions and nucleophilic trapping. As with other reactions in this chapter, free carbenes are not involved. Rhodium-carbene complexes are responsible for the chemistry. This has enormous consequences for the synthetic applications of the carbenes - not only does the metal tame the ferocity of the carbene, but it also allows control of the chemo-, regio- and stereoselectivity of the reaction by the choice of ligands. [Pg.312]

In many cases, a given substrate can follow different pathways according to the catalyst used. The rhodium complexes used typically have either carboxylate or amide ligands. Tremendous differences in reactivity can [Pg.312]


The metal-carbene complex 8.8 may be called a carbene precursor in analogy to precursors in photolytic carbene formation from diazo compounds. [Pg.318]

The cyclopropanation of alkenes via carbene transfer from diazo compounds can be achieved by a variety of transition metals. The most popular catalysts for this transformation are based on copper(I) and rhodium(II) complexes, however, paUadium(II) has been shown, as demonstrated first by Kirmse and Kapps, "- to be effective and even superior for certain substrates and reagents. " ... [Pg.1561]

Addition of diazo compounds to metallic complexes allows the formation of metal carbenoid species which can react with unsaturated molecules to form new carbon-carbon bonds. The Cp RuCl(cod)-catalyzed addition of diazo compoimds to alkynes led to the selective synthesis of functional 1,3-dienes by the combination of two molecules of diazoaUcane and one molecule of alkyne [115,116] [Eqs. (53) and (54)]. The ruthenium carbene, generated from diazo compound, reacts with the C=C bond to produce vinylcarbene intermediate able to add a second molecule of diazo compotmd to generate dienes. The stereoselective formation of these conjugated dienes results from the selective creation of two C=C bonds, probably due to the possibility for (C5Me5)RuCl moiety to accomodate two cis carbene ligands. This reaction occurred with terminal or internal alkynes as well as 1,3-diynes [115] and was applied successfully to alkynylboronates [116]. [Pg.312]

Historically, copper-based catalysts have played a prominent role in the in situ generation of metal carbenes (or carbenoids) from diazo compounds. In the 1970s, new transition metal complexes were discovered that widened the range... [Pg.794]

The ability of chiral bis(camphorquinone-a-dioximato)cobalt(Il) complexes (Section 1.2.1.2.4.2.6.3.1.) to catalyze carbene transfer from diazocarbonyl compounds (diazoacetic esters, 2-diazo-l-phenylethan-l-one) to terminal alkenes conjugated with vinyl, aryl, carbonyl, and cyano groups, has already been mentioned. The ee-values are 75-88 /o at best, often lower. The highest values are again obtained with bulky diazoacetic esters. The significance of these catalysts, however, is their ability to promote cyclopropanation of electron-deficient alkenes, such as acrylates and acrylonitriles, in contrast to the rhodium and copper catalysts discussed above. [Pg.462]

The mechanism of transition metal-catalyzed nitrogen extrusion from diazo compounds is not known in detail, but there is general agreement that metal-carbene complexes are formed in this process (Scheme 3) [6,7,11,28,29,30,31, 32]. Attempts to detect these elusive species in catalytic reactions have not been... [Pg.491]

These complexes can be isolated in some cases in others they are generated in situ from appropriate precursors, of which diazo compounds are among the most important. These compounds, including CH2N2 and other diazoalkanes, react with metals or metal salts (copper, palladium, and rhodium are most commonly used) to give the carbene complexes that add CRR to double bonds. Ethyl a-diazoacetate reacts with styrene in the presence of bis(ferrocenyl) bis(imine), for example, to give ethyl 2-phenylcyclopropane-l-carboxylate. Optically active complexes have... [Pg.1086]

The Lewis acid-Lewis base interaction outlined in Scheme 43 also explains the formation of alkylrhodium complexes 414 from iodorhodium(III) meso-tetraphenyl-porphyrin 409 and various diazo compounds (Scheme 42)398), It seems reasonable to assume that intermediates 418 or 419 (corresponding to 415 and 417 in Scheme 43) are trapped by an added nucleophile in the reaction with ethyl diazoacetate, and that similar intermediates, by proton loss, give rise to vinylrhodium complexes from ethyl 2-diazopropionate or dimethyl diazosuccinate. As the rhodium porphyrin 409 is also an efficient catalyst for cyclopropanation of olefins with ethyl diazoacetate 87,1°°), stj bene formation from aryl diazomethanes 358 and carbene insertion into aliphatic C—H bonds 287, intermediates 418 or 419 are likely to be part of the mechanistic scheme of these reactions, too. [Pg.238]

It has been widely accepted that the carbene-transfer reaction using a diazo compound and a transition metal complex proceeds via the corresponding metal carbenoid species. Nishiyama et al. characterized spectroscopically the structure of the carbenoid intermediate that underwent the desired cyclopropanation with high enantio- and diastereoselectivity, derived from (91).254,255 They also isolated a stable dicarbonylcarbene complex and demonstrated by X-ray analysis that the carbene moiety of the complex was almost parallel in the Cl—Ru—Cl plane and perpendicular to the pybox plane (vide infra).255 These results suggest that the rate-determining step of metal-catalyzed cyclopropanation is not carbenoid formation, but the carbene-transfer reaction.254... [Pg.249]

Certain transition metal complexes catalyze the decomposition of diazo compounds. The metal-bonded carbene intermediates behave differently from the free species generated via photolysis or thermolysis of the corresponding carbene precursor. The first catalytic asymmetric cyclopropanation reaction was reported in 1966 when Nozaki et al.93 showed that the cyclopropane compound trans- 182 was obtained as the major product from the cyclopropanation of styrene with diazoacetate with an ee value of 6% (Scheme 5-56). This reaction was effected by a copper(II) complex 181 that bears a salicyladimine ligand. [Pg.314]

There are no mechanistic details known from intermediates of copper, like we have seen in the studies on metathesis, where both metal alkylidene complexes and metallacyclobutanes that are active catalysts have been isolated and characterised. The copper catalyst must fulfil two roles, first it must decompose the diazo compound in the carbene and dinitrogen and secondly it must transfer the carbene fragment to an alkene. Copper carbene species, if involved, must be rather unstable, but yet in view of the enantioselective effect of the ligands on copper, clearly the carbene fragment must be coordinated to copper. It is generally believed that the copper carbene complex is rather a copper carbenoid complex, as the highly reactive species has reactivities very similar to free carbenes. It has not the character of a metal-alkylidene complex that we have encountered on the left-hand-side of the periodic table in metathesis (Chapter 16). Carbene-copper species have been observed in situ (in a neutral copper species containing an iminophosphanamide as the anion), but they are still very rare [9],... [Pg.363]

The normal byproducts formed during the transition metal-catalyzed decomposition of diazoalkanes are carbene dimers and azines [496,1023,1329], These products result from the reaction of carbene complexes with the carbene precursor. Their formation can be suppressed by slow addition (e.g. with a syringe motor) of a dilute solution of the diazo compound to the mixture of substrate and catalyst. Carbene dimerization can, however, also be a synthetically useful process. If, e.g., diazoacetone is treated with 0.1% RuClCpIPPhjij at 65 °C in toluene, cw-3-hexene-2,5-dione is obtained in 81% yield with high stereoselectivity [1038]. [Pg.232]

Laser flash photolysis of phenylchlorodiazirine was used to measure the absolute rate constants for intermolecular insertion of phenylchlorocarbene into CH bonds of a variety of co-reactants. Selective stabilization of the carbene ground state by r-complexation to benzene was proposed to explain the slower insertions observed in this solvent in comparison with those in pentane. Insertion into the secondary CH bond of cyclohexane showed a primary kinetic isotope effect k ikY) of 3.8. l-Hydroxymethyl-9-fluorenylidene (79), generated by photolysis of the corresponding diazo compound, gave aldehyde (80) in benzene or acetonitrile via intramolecular H-transfer. In methanol, the major product was the ether, formed by insertion of the carbene into the MeO-H bond, and the aldehyde (80) was formed in minor amounts through H-transfer from the triplet carbene to give a triplet diradical which can relax to the enol. [Pg.263]

Complexes were also considered for other carbenes and even suggested for reactions in alkane solution( ) A counterproposal, backed by the inability of theory to find support for such stable complexes, held that the second source was not the carbene-alkene complex but instead was the diazo compound, formed from isomerization of excited diazirine. " Other LFP studies reinforced the need for two intermediates, but could not finally resolve the question of carbene complexes ver-sus diazo compound. However, the question is now settled in this case,... [Pg.312]

Certain transition metal complexes catalyze the decomposition of diazo compounds, where the metal-bound carbene intermediates behave differently from the free species generated by their photolysis or thermolysis. [Pg.303]

Rh(II) carboxylates, especially Rh2(OAc)4> have emerged as the most generally effective catalysts for metal carbene transformations [7-10] and thus interest continues in the design and development of dirhodium(II) complexes that possess chiral51igands. They are structurally well-defined, with D2h symmetry [51] and axial coordination sites at which carbene formation occurs in reactions with diazo compounds. With chiral dirhodium(II) carboxylates the asymmetric center is located relatively far from the carbene center in the metal carbene intermediate. The first of these to be reported with applications to cyclopropanation reactions was developed by Brunner [52], who prepared 13 chiral dirhodium(II) tetrakis(car-boxylate) derivatives (16) from enantiomerically pure carboxylic acids RlR2R3CC OOH with substituents that were varied from H, Me, and Ph to OH, NHAc, and CF3. However, reactions performed between ethyl diazoacetate and styrene yielded cyclopropane products whose enantiopurities were less than 12% ee, a situation analogous to that encountered by Nozaki [2] in the first applications of chiral Schiff base-Cu(II) catalysts. [Pg.203]

The Cu(I)-catalyzed decomposition of (alkynyloxysilyl)diazoacetates 119 furnishes the silaheterocycles 120 and/or 121 (equation 30) in modest yield63. In these cases, the photochemical extrusion of nitrogen from 119 does not lead to defined products and the thermal reaction is dominated by the 1,3-dipolar cycloaddition ability of these diazo compounds. In mechanistic terms, carbene 122 or more likely a derived copper carbene complex, is transformed into cyclopropene 123 by an intramolecular [1 + 2] cycloaddition to the triple bond. The strained cyclopropene rearranges to a vinylcarbene either with an exo-cyclic (124) or an endocyclic (125) carbene center, and typical carbene reactions then lead to the observed products. Analogous carbene-to-carbene rearrangements are involved in carbenoid transformations of other alkynylcarbenes64. [Pg.732]

Structures of type XVIII or XIX as proposed for the diazodicyanomethane complex (Table 12) may also apply to the complexes of diphenyldiazomethane and 9-diazo-fluorene. The formation of the ketenimine complex (45) from the reaction of (CN)2CN2 and Ni(t-BuNC)4 probably occurs via attack of the complexed dicyano-methylene carbene on the isocyanide ligand113 The observation that these complexes112 113 catalyze the formation of ketenimines from isocyanides and diazo compounds, a reaction which does not proceed under same conditions without the transition metal, may be of preparative value 113 ... [Pg.137]


See other pages where Carbene Complexes from Diazo Compounds is mentioned: [Pg.312]    [Pg.312]    [Pg.46]    [Pg.169]    [Pg.156]    [Pg.139]    [Pg.289]    [Pg.59]    [Pg.25]    [Pg.73]    [Pg.369]    [Pg.209]    [Pg.194]    [Pg.79]    [Pg.234]    [Pg.238]    [Pg.170]    [Pg.11]    [Pg.291]    [Pg.160]    [Pg.167]    [Pg.175]    [Pg.177]    [Pg.748]    [Pg.252]    [Pg.340]    [Pg.624]   


SEARCH



Carbene compounds

Diazo compounds

Diazo compounds carbenes from

From carbenes

From diazo compounds

© 2024 chempedia.info