Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbene complexes alkylations

Many other organometaUic compounds also react with carbonyl groups. Lithium alkyls and aryls add to the ester carbonyl group to give either an alcohol or an olefin. Lithium dimethyl cuprate has been used to prepare ketones from esters (41). Tebbe s reagent, Cp2TiCH2AlCl(CH2)2, where Cp = clyclopentadienyl, and other metal carbene complexes can convert the C=0 of esters to C=CR2 (42,43). [Pg.389]

Trifluoromethyl-substituted diazonium betaines [176]. Synthetic routes to trifluoromethyl-substituted diazo alkanes, such as 2,2,2-trifluorodiazoethane [ 177, 7 78, 179] and alkyl 3,3,3-trifluoro-2-diazopropionates [24], have been developed Rhodium-catalyzed decomposition of 3,3,3-tnfluoro-2-diazopropionates offers a simple preparative route to highly reactive carbene complexes, which have an enormous synthetic potential [24] [3-1-2] Cycloaddition reactions were observed on reaction with nitnles to give 5-alkoxy-4-tnfluoromethyloxazoles [750] (equation 41)... [Pg.862]

Chromium carbene complexes like 13, which are called Fischer carbene complexes, can conveniently be prepared from chromium hexacarbonyl 11 and an organolithium compound 12, followed by an O-alkylation step ... [Pg.100]

Schrock-type carbenes are nucleophilic alkylidene complexes formed by coordination of strong donor ligands such as alkyl or cyclopentadienyl with no 7T-acceptor ligand to metals in high oxidation states. The nucleophilic carbene complexes show Wittig s ylide-type reactivity and it has been discussed whether the structures may be considered as ylides. A tantalum Schrock-type carbene complex was synthesized by deprotonation of a metal alkyl group [38] (Scheme 7). [Pg.5]

Fischer-type carbene complexes, generally characterized by the formula (CO)5M=C(X)R (M=Cr, Mo, W X=7r-donor substitutent, R=alkyl, aryl or unsaturated alkenyl and alkynyl), have been known now for about 40 years. They have been widely used in synthetic reactions [37,51-58] and show a very good reactivity especially in cycloaddition reactions [59-64]. As described above, Fischer-type carbene complexes are characterized by a formal metal-carbon double bond to a low-valent transition metal which is usually stabilized by 7r-acceptor substituents such as CO, PPh3 or Cp. The electronic structure of the metal-carbene bond is of great interest because it determines the reactivity of the complex [65-68]. Several theoretical studies have addressed this problem by means of semiempirical [69-73], Hartree-Fock (HF) [74-79] and post-HF [80-83] calculations and lately also by density functional theory (DFT) calculations [67, 84-94]. Often these studies also compared Fischer-type and... [Pg.6]

From Alkyl-Substituted Fischer Carbene Complexes. 23... [Pg.21]

The ability of Fischer carbene complexes to transfer their carbene ligand to an electron-deficient olefin was discovered by Fischer and Dotz in 1970 [5]. Further studies have demonstrated the generality of this thermal process, which occurs between (alkyl)-, (aryl)-, and (alkenyl)(alkoxy)carbene complexes and different electron-withdrawing substituted alkenes [6] (Scheme 1). For certain substrates, a common side reaction in these processes is the insertion of the carbene ligand into an olefinic C-H bond [6, 7]. In addition, it has been ob-... [Pg.62]

Asymmetric versions of the cyclopropanation reaction of electron-deficient olefins using chirally modified Fischer carbene complexes, prepared by exchange of CO ligands with chiral bisphosphites [21a] or phosphines [21b], have been tested. However, the asymmetric inductions are rather modest [21a] or not quantified (only the observation that the cyclopropane is optically active is reported) [21b]. Much better facial selectivities are reached in the cyclopropanation of enantiopure alkenyl oxazolines with aryl- or alkyl-substituted alkoxy-carbene complexes of chromium [22] (Scheme 5). [Pg.65]

Catalytic cyclopropanation of alkenes has been reported by the use of diazoalkanes and electron-rich olefins in the presence of catalytic amounts of pentacarbonyl(rj2-ris-cyclooctene)chromium [23a,b] (Scheme 6) and by treatment of conjugated ene-yne ketone derivatives with different alkyl- and donor-substituted alkenes in the presence of a catalytic amount of pentacarbon-ylchromium tetrahydrofuran complex [23c]. These [2S+1C] cycloaddition reactions catalysed by a Cr(0) complex proceed at room temperature and involve the formation of a non-heteroatom-stabilised carbene complex as intermediate. [Pg.66]

Electron-deficient 1,3-dienes are known to react when heated with metho-xy(aryl)- or methoxy(alkyl)carbene complexes to afford vinylcyclopropane derivatives with high regioselectivity and diastereoselectivity [8a, 24]. Cyclo-propanation of the double bond not bearing the acceptor functional group and... [Pg.66]

Simple 1,3-dienes also undergo a thermal monocyclopropanation reaction with methoxy(alkyl)- and methoxy(aryl)carbene complexes of molybdenum and chromium [27]. The most complete study was carried out by Harvey and Lund and they showed that this process occurs with high levels of both regio-and diastereoselectivity. The chemical yield is significantly higher with molybdenum complexes [27a] (Scheme 7). Tri- and tetrasubstituted 1,3-dienes and 3-methylenecyclohexene (diene locked in an s-trans conformation) fail to react [28]. The monocyclopropanation of electronically neutral 1,3-dienes with non-heteroatom-stabilised carbene complexes has also been described [29]. [Pg.67]

The [3S+1C] cycloaddition reaction with Fischer carbene complexes is a very unusual reaction pathway. In fact, only one example has been reported. This process involves the insertion of alkyl-derived chromium carbene complexes into the carbon-carbon a-bond of diphenylcyclopropenone to generate cyclobutenone derivatives [41] (Scheme 13). The mechanism of this transformation involves a CO dissociation followed by oxidative addition into the cyclopropenone carbon-carbon a-bond, affording a metalacyclopentenone derivative which undergoes reductive elimination to produce the final cyclobutenone derivatives. [Pg.71]

Aryl- and alkenylcarbene complexes are known to react with alkynes through a [3C+2S+1C0] cycloaddition reaction to produce benzannulated compounds. This reaction, known as the Dotz reaction , is widely reviewed in Chap. Chromium-Templated Benzannulation Reactions , p. 123 of this book. However, simple alkyl-substituted carbene complexes react with excess of an alkyne (or with diynes) to produce a different benzannulated product which incorporates in its structure two molecules of the alkyne, a carbon monoxide ligand and the carbene carbon [128]. As referred to before, this [2S+2SH-1C+1C0] cycloaddition reaction can be carried out with diyne derivatives, showing these reactions give better yields than the corresponding intermolecular version (Scheme 80). [Pg.112]

It has been shown how alkenylcarbene complexes participate in nickel(0)-me-diated [3C+2S+2S] cycloaddition reactions to give cycloheptatriene derivatives (see Sect. 3.3). However, the analogous reaction performed with alkyl- or aryl-carbene complexes leads to similar cycloheptatriene derivatives, but in this case the process can be considered a [2S+2S+2S+1C] cycloaddition reaction as three molecules of the alkyne and one molecule of the carbene complex are incorporated into the structure of the final product [125] (Scheme 82). The mechanism of this transformation is similar to that described in Scheme 77 for the [3C+2S+2S] cycloaddition reactions. [Pg.113]

Alkoxycarbene complexes with unsaturation in the alkyl side chain rather than the alkoxy chain underwent similar intramolecular photoreactions (Eqs. 10 and 11) [60]. Cyclopropyl carbene complexes underwent a facile vinyl-cyclopropane rearrangement, presumably from the metal-bound ketene intermediate (Eqs. 12 and 13) [61]. A cycloheptatriene carbene complex underwent a related [6+2] cycloaddition (Eq. 14) [62]. [Pg.168]

Photodriven reactions of Fischer carbenes with alcohols produces esters, the expected product from nucleophilic addition to ketenes. Hydroxycarbene complexes, generated in situ by protonation of the corresponding ate complex, produced a-hydroxyesters in modest yield (Table 15) [103]. Ketals,presumably formed by thermal decomposition of the carbenes, were major by-products. The discovery that amides were readily converted to aminocarbene complexes [104] resulted in an efficient approach to a-amino acids by photodriven reaction of these aminocarbenes with alcohols (Table 16) [105,106]. a-Alkylation of the (methyl)(dibenzylamino)carbene complex followed by photolysis produced a range of racemic alanine derivatives (Eq. 26). With chiral oxazolidine carbene complexes optically active amino acid derivatives were available (Eq. 27). Since both enantiomers of the optically active chromium aminocarbene are equally available, both the natural S and unnatural R amino acid derivatives are equally... [Pg.182]

Carboxylic esters undergo the conversion C=0— C=CHR (R = primary or secondary alkyl) when treated with RCHBr2, Zn, and TiCl4 in the presence of A,A,A, iV -tetramethylethylenediamine. Metal carbene complexes R2C=ML (L = ligand), where M is a transition metal such as Zr, W, or Ta, have also been used to convert the C=0 of carboxylic esters and lactones to CR2. It is likely that the complex Cp2Ti=CH2 is an intermediate in the reaction with Tebbe s reagent. [Pg.1238]

Ru—C(carbene) bond distances are shorter than Ru—P bond lengths, but this can simply be explained by the difference in covalent radii between P and The variation of Ru—C(carbene) bond distances among ruthenium carbene complexes illustrates that nucleophilic carbene ligands are better donors when alkyl, instead of aryl, groups are present, with the exception of 6. This anomaly can be explained on the basis of large steric demands of the adamantyl groups on the imidazole framework which hinder the carbene lone pair overlap with metal orbitals. Comparison of the Ru—C(carbene) bond distances among the aryl-substituted carbenes show... [Pg.187]

Diazoalkanes are u.seful is precursors to ruthenium and osmium alkylidene porphyrin complexes, and have also been investigated in iron porphyrin chemistry. In an attempt to prepare iron porphyrin carbene complexes containing an oxygen atom on the /(-carbon atom of the carbene, the reaction of the diazoketone PhC(0)C(Ni)CH3 with Fe(TpCIPP) was undertaken. A low spin, diamagnetic carbene complex formulated as Fe(TpCIPP)(=C(CH3)C(0)Ph) was identified by U V-visible and fI NMR spectroscopy and elemental analysis. Addition of CF3CO2H to this rapidly produced the protonated N-alkyl porphyrin, and Bit oxidation in the presence of sodium dithionitc gave the iron(II) N-alkyl porphyrin, both reactions evidence for Fe-to-N migration processes. ... [Pg.262]


See other pages where Carbene complexes alkylations is mentioned: [Pg.178]    [Pg.193]    [Pg.13]    [Pg.23]    [Pg.61]    [Pg.64]    [Pg.70]    [Pg.85]    [Pg.109]    [Pg.187]    [Pg.368]    [Pg.190]    [Pg.244]    [Pg.263]    [Pg.274]    [Pg.278]    [Pg.307]    [Pg.115]    [Pg.109]   
See also in sourсe #XX -- [ Pg.3 , Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.69 , Pg.70 , Pg.71 , Pg.72 , Pg.73 , Pg.74 , Pg.75 , Pg.76 , Pg.77 , Pg.78 , Pg.79 , Pg.80 , Pg.81 ]

See also in sourсe #XX -- [ Pg.3 , Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.69 , Pg.70 , Pg.71 , Pg.72 , Pg.73 , Pg.74 , Pg.75 , Pg.76 , Pg.77 , Pg.78 , Pg.79 , Pg.80 , Pg.81 ]




SEARCH



Alkyl complexes

Alkyl from carbene complexes

Alkylation complex

Alkylations complexes

Carbene complexes alkylation

Carbene complexes alkylation

Carbene complexes, alkyl aminoalkylation

Carbene complexes, alkyl pentacarbonylalkylation

Carbene complexes, alkyl pentacarbonylalkylation anions

Carbene complexes, alkyl pentacarbonylalkylation reaction with carbonyl compounds

Carbene complexes, tetracarbonyl phosphine alkylation

Carbenes alkyl

Triflates, alkyl carbonyl phosphine carbene complexes

Tungsten complexes, alkyl carbene

© 2024 chempedia.info