Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl carbonates lipase Candida antarctica

In principle, numerous reports have detailed the possibility to modify an enzyme to carry out a different type of reaction than that of its attributed function, and the possibility to modify the cofactor of the enzyme has been well explored [8,10]. Recently, the possibility to directly observe reactions, normally not catalyzed by an enzyme when choosing a modified substrate, has been reported under the concept of catalytic promiscuity [9], a phenomenon that is believed to be involved in the appearance of new enzyme functions during the course of evolution [23]. A recent example of catalytic promiscuity of possible interest for novel biotransformations concerns the discovery that mutation of the nucleophilic serine residue in the active site of Candida antarctica lipase B produces a mutant (SerlOSAla) capable of efficiently catalyzing the Michael addition of acetyl acetone to methyl vinyl ketone [24]. The oxyanion hole is believed to be complex and activate the carbonyl group of the electrophile, while the histidine nucleophile takes care of generating the acetyl acetonate anion by deprotonation of the carbon (Figure 3.5). [Pg.69]

The integration of a catalyzed kinetic enantiomer resolution and concurrent racemization is known as a dynamic kinetic resolution (DKR). This asymmetric transformation can provide a theoretical 100% yield without any requirement for enantiomer separation. Enzymes have been used most commonly as the resolving catalysts and precious metals as the racemizing catalysts. Most examples involve racemic secondary alcohols, but an increasing number of chiral amine enzyme DKRs are being reported. Reetz, in 1996, first reported the DKR of rac-2-methylbenzylamine using Candida antarctica lipase B and vinyl acetate with palladium on carbon as the racemization catalyst [20]. The reaction was carried out at 50°C over 8 days to give the (S)-amide in 99% ee and 64% yield. Rather surpris-... [Pg.276]

Primary alcohols have been successfully used as substrates for lipases. Monterde et. Al60 reported the resolution of the chiral auxiliary 2-methoxy-2-phenylethanol 1 via Candida antarctica lipase B (CAL-B)-catalyzed acylation using either vinyl acetate (R=H) or isopropenyl acetate (R= CH3) as acyl donor (cf. fig. 8) and the alkoxycarbonylation using diallyl carbonate as the alkoxycarbonylation agent in THF at 30 °C (cf. fig. 9). [Pg.202]

Fig. 8.1 Experimental set-up of the recirculating enzymatic membrane reactor used for the synthesis of butyl propionate from vinyl propionate and 1-butanol catalysed by Candida antarctica lipase B in supercritical carbon dioxide and supercritical carbon dioxide/ionic liquid biphasic system [17]... Fig. 8.1 Experimental set-up of the recirculating enzymatic membrane reactor used for the synthesis of butyl propionate from vinyl propionate and 1-butanol catalysed by Candida antarctica lipase B in supercritical carbon dioxide and supercritical carbon dioxide/ionic liquid biphasic system [17]...
Fig. 8.4 Initial reaction rate (bars) and selectivity (points) exhibited by free Candida antarctica lipase B for butyl propionate synthesis in supercritical carbon dioxide and in four different ionic liquids/supercritical carbon dioxide systems. The reaction conditions were r=50°C, vinyl propionate 150 mM and 1-butanol 100 Mm [38]... Fig. 8.4 Initial reaction rate (bars) and selectivity (points) exhibited by free Candida antarctica lipase B for butyl propionate synthesis in supercritical carbon dioxide and in four different ionic liquids/supercritical carbon dioxide systems. The reaction conditions were r=50°C, vinyl propionate 150 mM and 1-butanol 100 Mm [38]...
A novel continuous-flow SCCO2 process for the kinetic resolution of 1-phenyethanol enantiomers (Figure 30) using Novozym 435 immobilized enzyme from Candida antarctica was described by Matsuda et al. [51], The lipase enzyme, selectively acetylated the R)-alcohol component. A mixture of starting material and vinyl acetate was passed through the enzyme with supercritical carbon-dioxide (Figure 31). The reaction zone was pressurized and heated, so the reaction could be performed imder supercritical conditions, synthesizing the desired (i )-acetate with 99.7% ee. and 47% yield. [Pg.419]

Catalytic tests with the lipase-monolithic catalysts were performed in a monolithic stirrer reactor consisting of a glass vessel equipped with a stirrer motor (V = 2.5 dm ). 1-Butanol and vinyl acetate concentrations were 0.6 M and 1 M, respectively. Activity tests with immobilized lipase Candida antarctica) were performed at varying stirrer rates and temperatures. Carbon monoliths (Westvaco integral carbon monoliths, with a loading of 30 wt% of microporous activated carbon, wall thickness 0.3 mm) were used as a reference material. [Pg.406]


See other pages where Vinyl carbonates lipase Candida antarctica is mentioned: [Pg.191]    [Pg.708]    [Pg.164]   
See also in sourсe #XX -- [ Pg.781 ]




SEARCH



Antarctica

Candida

Candida Carbon

Candida antarctica

Candida lipase

Lipases Candida antarctica lipase

Vinyl carbon

Vinyl carbonates

Vinylic carbon

© 2024 chempedia.info