Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Camphor diastereoselective reactions

Tolman and co-workers (67) investigated a series of pyrazolyl-derived ligands for this reaction. Initial investigations centered on the use of tris(pyrazolyl) phosphine oxide (95) as a ligand with chirality derived from camphor. Diastereoselectivities with ethyl diazoacetate are poor, slightly favoring the cis isomer, and enantioselectivities are modest, Eq. 50. The BHT esters greatly increase the diastereoselectivity of this process (96 4) at the expense of enantioselectivity (10% ee for trans isomer). [Pg.35]

The a,p-unsaturated amides 180-188a have all been used in 1,3-dipolar cycloadditions with nitrile oxides, and some of them represent the most diastereoselective reactions of nitrile oxides. The camphor derivative 180 of Chen and co-workers (294), the sultam 181 of Oppolzer et al. (295), and the two Kemp s acid derived compounds 186 (296) and 187 (297) described by Curran et al. (296) are excellent partners for diastereoselective reactions with nitrile oxides, as very high diastereos-electivities have been observed for all of them. In particular, compound 186 gave, with few exceptions, complete diastereoselection in reactions with a wide range of different nitrile oxides. Good selectivities were also observed when using compounds 183 (298) and 184 (299-301) in nitrile oxide cycloadditions, and they have the advantage that they are more readily available. Curran and co-workers also studied the 1,3-dipolar cycloaddition of 187 with silyl nitronates. However, compared to the reactions of nitrile oxides, lower selectivities of up to 86% de were obtained (302). [Pg.857]

The authors provided some experimental support for their hypothesis by performing various diastereoselective reactions on racemic or optically active compounds. Indeed, they found some differences in stereoselectivity between the two cases. Reduction of DL-camphor or D-camphor with lithium aluminum hydride, for example, gave ratios of isobomeol to bomeol of 7.93 and 9.20, respectively. [Pg.263]

For the classic P-3CR there are only a few examples of auxiliary-controlled highly diastereoselective reactions. Ugi developed a camphor-based nonracemic isonitrile which gave good yields of Passerini products with high diastereoselection (92-93% de). However, this methodology was demonstrated for only a very limited number of simple alkyl aldehydes. [Pg.772]

Since cbiral sulfur ylides racemize rapidly, they are generally prepared in situ from chiral sulfides and halides. The first example of asymmetric epoxidation was reported in 1989, using camphor-derived chiral sulfonium ylides with moderate yields and ee (< 41%) Since then, much effort has been made in tbe asymmetric epoxidation using sucb a strategy without a significant breakthrough. In one example, the reaction between benzaldehyde and benzyl bromide in the presence of one equivalent of camphor-derived sulfide 47 furnished epoxide 48 in high diastereoselectivity (trans cis = 96 4) with moderate enantioselectivity in the case of the trans isomer (56% ee). ... [Pg.6]

There has been some investigation of auxiliary-controlled cycloadditions of azir-ines. Thus, camphor-derived azirine esters undergo cycloaddition with dienes, with poor diastereoselectivity [70]. The same azirines were also observed to react unselectively with phenylmagnesium bromide. Better selectivities were obtained when Lewis acids were used in the corresponding cycloaddition reactions of 8-phe-nylmenthyl esters of azirine 2-carboxylates (Scheme 4.48) [71]. The same report also describes the use of asymmetric Lewis acids in similar cycloadditions, but mediocre ees were observed. [Pg.139]

The addition reactions of alkyllithium-lithium bromide complexes to a-trimethylsilyl vinyl sulfones that have as a chiral auxiliary a y-mono-thioacetal moiety derived from ( + )-camphor are highly diastereoselective. A transition state that involves chelation of the organolithium reagent to the oxygen of the thioacetal moiety has been invoked. The adducts are readily converted via hydrolysis, to chiral a-substituted aldehydes22. [Pg.1039]

Studies of the intramolecular cyclization of P-amino acids have included the use of camphor-derived oxazoline A-oxide 66 and a [3+2] cycloaddition reaction as a step in the formation of the amino acid with the required stereochemistry <00OL1053, OOEJOC1595>. A diastereoselective synthesis of a ip-methylcarbapenem intermediate utilises a cyclization of a P-amino acid <99CC2365>. [Pg.78]

It is also possible to carry out a substrate-controlled reaction with aldehydes in an asymmetric way by starting with an acetylene bearing an optically active ester group, as shown in Eq. 9.8 [22]. The titanium—acetylene complexes derived from silyl propiolates having a camphor-derived auxiliary react with aldehydes with excellent diastereoselectivity. The reaction thus offers a convenient entry to optically active Baylis—Hillman-type allyl alcohols bearing a substituent (3 to the acrylate group, which have hitherto proved difficult to prepare by the Baylis—Hillman reaction itself. [Pg.326]

The formation of spirocyclopropanes from the reaction of diazodiphenylmethane and ( )-8-phenylmenthyl esters of acrylic acid and methyl fumarate occurred with a modest level of diastereofacial selectivity (136). In contrast, diastereoselectivities of 90 10 were achieved in the cycloadditions of diazo(trimethylsilyl)methane with acrylamides 65 derived from camphor sultam as the chiral auxiliary (137) (Scheme 8.16). Interestingly, the initial cycloadducts 66 afforded the nonconjugated A -pyrazolines 67 on protodesilylation the latter were converted into optically active azaproline derivatives 68. In a related manner, acrylamide 69 was converted into A -pyrazolines 70a,b (138). The major diastereoisomer 70a was used to synthesize indolizidine 71. The key step in this synthesis involves the hydrogenolytic cleavage of the pyrazoline ring. [Pg.554]

The hetero-Diels-Alder reaction of homochiral camphor-derived thiabutadienes has given, for the first time, optically active bornene ring-fused dihydrothiopyrans with high diastereoselectivity (Scheme 53) <2000H(53)1685>. The exo endo- t2X o varied with the nature of substituent, varying from 91 9 (X = CH2, R = R = H) to 1 99 (X = CO,... [Pg.737]

Wynberg studied stereochemistry of the McMurry reductive dimerization of camphor in detail (64). In Scheme 37, A and B are homochiral dimerization products derived by the low-valence Ti-promoted reduction, while C and D are achiral heterochiral dimers. The reaction of racemic camphor prefers homochiral dimerization (total 64.9%) over the diastereomeric heterochiral coupling (total 35.1 %). Similarly, as illustrated in Scheme 38, oxidative dimerization of the chiral phenol A can afford the chiral dimers B and C (and the enantiomers) or the meso dimer D. In fact, a significant difference is seen in diastereoselectivity between the enaritiomerically pure and racemic phenol as starting materials. The enantiomerically pure S substrate produces (S,S)-B exclusively, while the dimerization of the racemic substrate is not stereoselective. In the latter case, some indirect enantiomer effect assists the production of C, which is absent in the former reaction. Thus, it appears that, even though the reagents and reaction conditions are identical, the chirality of the substrate profoundly affects the stability of the transition state. [Pg.347]

Chiral halohydrins epoxides.1 The esters (2) of the chiral alcohol 1 derived from camphor-10-sulfonic acid, are converted to a-chloro esters (3) by O-silylation and reaction with NCS with high diastereoselectivity. Reduction of 3 with Ca(BH4)2 results in the recovered auxiliary and the chlorohydrin 4 with clean retention. Cyclization of 4 to the terminal epoxide 5 proceeds with clean inversion. [Pg.62]

In the following specific substitution pattern, the outcome of the reaction depends on the energy of the transition states of the addition, the rotation and the ring closure, as described by Aggarwal. Although explanations for the diastereoselectivity have been given, the enantioselectivity that is induced by the camphor-derived sulphonium group is not yet fully understood ... [Pg.93]

Asymmetric Baylis-Hillman reactions using sugar acrylates have been reported to proceed with moderate diastereoselectivity (5-40% ee) [23]. The reaction of camphor-based chiral acryloylhydrazides with aldehydes in the presence of DABCO afforded /1-hydroxy-a-methylene carbonyl derivatives in 68-92% yield with high diastereoselectivity (up to 98% de) [24]. Both diastereomers could be selectively obtained simply by changing the solvent. [Pg.168]

Sato and coworkers have reported an asymmetric synthesis of Baylis-Hillman-type allylic alcohols 48, 49 via a chiral acetylenic ester titanium alkoxide complex (Scheme 9) [41]. These reactions rely on the use of the novel acetylenic ester titanium alkoxide complex 44 with a camphor-derived chiral auxiliary. Optically active, stereodefined hydroxy acrylates 46, 47 were obtained in high yields and with excellent regio- and diastereoselectivities. The chiral auxiliary was subsequently cleaved off by alcoholysis. [Pg.173]

Other cyclic or bicyclic ketones do not have a convex side but only a less concave and a more concave side. Thus, a hydride donor can add to such a carbonyl group only from a concave side. Because of the steric hindrance, this normally results in a decrease in the reactivity. However, the addition of this hydride donor is still less disfavored when it takes place from the less concave (i.e., the less hindered) side. As shown in Figure 10.10 (top) by means of the comparison of two reductions of norbomanone, this effect is more noticeable for a bulky hydride donor such as L-Selectride than for a small hydride donor such as NaBH4. As can be seen from Figure 10.10 (bottom), the additions of all hydride donors to the norbomanone derivative B (camphor) take place with the opposite diastereoselectivity. As indicated for each substrate, the common selectivity-determining factor remains the principle that the reaction with hydride takes place preferentially from the less hindered side of the molecule. [Pg.406]


See other pages where Camphor diastereoselective reactions is mentioned: [Pg.110]    [Pg.655]    [Pg.655]    [Pg.214]    [Pg.655]    [Pg.32]    [Pg.243]    [Pg.268]    [Pg.269]    [Pg.499]    [Pg.29]    [Pg.520]    [Pg.360]    [Pg.505]    [Pg.775]    [Pg.792]    [Pg.412]    [Pg.520]    [Pg.429]    [Pg.622]    [Pg.639]    [Pg.201]    [Pg.223]    [Pg.631]    [Pg.74]    [Pg.555]   
See also in sourсe #XX -- [ Pg.840 ]




SEARCH



Camphorates

Camphore

Diastereoselective reaction

Diastereoselective reactions Diastereoselectivity

Diastereoselectivity reaction

© 2024 chempedia.info