Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

CAMP-dependent protein phosphorylation

Pyruvate kinase possesses allosteric sites for numerous effectors. It is activated by AMP and fructose-1,6-bisphosphate and inhibited by ATP, acetyl-CoA, and alanine. (Note that alanine is the a-amino acid counterpart of the a-keto acid, pyruvate.) Furthermore, liver pyruvate kinase is regulated by covalent modification. Flormones such as glucagon activate a cAMP-dependent protein kinase, which transfers a phosphoryl group from ATP to the enzyme. The phos-phorylated form of pyruvate kinase is more strongly inhibited by ATP and alanine and has a higher for PEP, so that, in the presence of physiological levels of PEP, the enzyme is inactive. Then PEP is used as a substrate for glucose synthesis in the pathway (to be described in Chapter 23), instead... [Pg.630]

Phosphorylation by cAMP-dependent protein kinases inactivates the reductase. This inactivation can be reversed by two specific phosphatases (Figure 25.33). [Pg.834]

The cAMP responsive element binding factor (CREB) is also activated by phosphorylation. Depending on the stimuli, CREB is the target of a cAMP dependent protein kinase or of kinases called MAPKs, RSK, and CamKIV. As in AP-1, CREB carries a basic leucine zipper motif (bZDP), which mediates homo dimerization of CREB when bound to the CRE. [Pg.1227]

Both phosphorylase a and phosphorylase kinase a are dephosphorylated and inactivated by protein phos-phatase-1. Protein phosphatase-1 is inhibited by a protein, inhibitor-1, which is active only after it has been phosphorylated by cAMP-dependent protein kinase. Thus, cAMP controls both the activation and inactivation of phosphorylase (Figure 18-6). Insulin reinforces this effect by inhibiting the activation of phosphorylase b. It does this indirectly by increasing uptake of glucose, leading to increased formation of glucose 6-phosphate, which is an inhibitor of phosphorylase kinase. [Pg.148]

Figure 21-6. Regulation of acetyl-CoA carboxylase by phosphorylation/dephosphorylation.The enzyme is inactivated by phosphorylation by AMP-activated protein kinase (AMPK), which in turn is phosphorylated and activated by AMP-activated protein kinase kinase (AMPKK). Glucagon (and epinephrine), after increasing cAMP, activate this latter enzyme via cAMP-dependent protein kinase. The kinase kinase enzyme is also believed to be activated by acyl-CoA. Insulin activates acetyl-CoA carboxylase, probably through an "activator" protein and an insulin-stimulated protein kinase. Figure 21-6. Regulation of acetyl-CoA carboxylase by phosphorylation/dephosphorylation.The enzyme is inactivated by phosphorylation by AMP-activated protein kinase (AMPK), which in turn is phosphorylated and activated by AMP-activated protein kinase kinase (AMPKK). Glucagon (and epinephrine), after increasing cAMP, activate this latter enzyme via cAMP-dependent protein kinase. The kinase kinase enzyme is also believed to be activated by acyl-CoA. Insulin activates acetyl-CoA carboxylase, probably through an "activator" protein and an insulin-stimulated protein kinase.
So far, it has been established from in vitro studies that the enzyme undergoes phosphorylation, a process that changes the conformation of the enzyme protein and leads to an increase in its activity. This involves Ca +/calmodulin-dependent protein kinase II and cAMP-dependent protein kinase which suggests a role for both intracellular Ca + and enzyme phosphorylation in the activation of tryptophan hydroxylase. Indeed, enzyme purified from brain tissue innervated by rostrally projecting 5-HT neurons, that have been stimulated previously in vivo, has a higher activity than that derived from unstimulated tissue but this increase rests on the presence of Ca + in the incubation medium. Also, when incubated under conditions which are appropriate for phosphorylation, the of tryptophan hydroxylase for its co-factor and substrate is reduced whereas its Fmax is increased unless the enzyme is purified from neurons that have been stimulated in vivo, suggesting that the neuronal depolarisation in vivo has already caused phosphorylation of the enzyme. This is supported by evidence that the enzyme activation caused by neuronal depolarisation is blocked by a Ca +/calmodulin protein kinase inhibitor. However, whereas depolarisation... [Pg.192]

A significant functional and structural feature of the plasma membrane Ca pumps is the presence of the calmodulin-binding subdomains A and B near the C-terminus (Fig. 3), that imparts calmodulin sensitivity on the Ca transport and ATP hydrolysis [3]. Adjacent to the calmodulin-binding region are two acidic segments (AC) and the P(S) region containing a serine residue that is susceptible to phosphorylation by cAMP-dependent protein kinase [34]. A unique feature of the plasma membrane Ca pump is its activation by acidic phospholipids that are presumed to... [Pg.69]

Cheng Y, Zhang Y, McCammon JA (2005) How does the camp-dependent protein kinase catalyze the phosphorylation reaction an ab initio QM/MM study. J Am Chem Soc 127 1553—1562... [Pg.349]

Dl-iike receptors activate the Gs transduction pathway, stimulating the production of adenylyl cyclase, which increases the formation of cyclic adenosine monophosphate (cAMP) and ultimately increases the activity of cAMP-dependent protein kinase (PKA). PKA activates DARPP-32 (dopamine and cyclic adenosine 3, 5 -monophosphate-regulated phosphoprotein, 32 kDa) via phosphorylation, permitting phospho-DARPP-32 to then inhibit protein phosphatase-1 (PP-1). The downstream effect of decreased PP-1 activity is an increase in the phosphorylation states of assorted downstream effector proteins regulating neurotransmitter... [Pg.182]

Phosphorylation of the GABAA receptor by cAMP-dependent protein kinase and by protein kinase C analysis of the substrate domain. Neurochem. Res. 18, 95-100. [Pg.302]


See other pages where CAMP-dependent protein phosphorylation is mentioned: [Pg.906]    [Pg.490]    [Pg.494]    [Pg.223]    [Pg.13]    [Pg.116]    [Pg.191]    [Pg.191]    [Pg.906]    [Pg.906]    [Pg.490]    [Pg.494]    [Pg.223]    [Pg.13]    [Pg.116]    [Pg.191]    [Pg.191]    [Pg.906]    [Pg.279]    [Pg.466]    [Pg.468]    [Pg.479]    [Pg.29]    [Pg.297]    [Pg.298]    [Pg.488]    [Pg.72]    [Pg.73]    [Pg.148]    [Pg.150]    [Pg.151]    [Pg.157]    [Pg.158]    [Pg.462]    [Pg.462]    [Pg.238]    [Pg.30]    [Pg.31]    [Pg.69]    [Pg.327]    [Pg.327]    [Pg.98]    [Pg.180]    [Pg.436]   
See also in sourсe #XX -- [ Pg.494 ]

See also in sourсe #XX -- [ Pg.25 , Pg.494 ]




SEARCH



CAMP

CAMP-dependent phosphorylation

Phosphorylated protein

Protein cAMP-dependent

Protein dependence

© 2024 chempedia.info