Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calorimetry endotherm

Figure 4 Differential scanning calorimetry endotherms (DSC model 2910, TA Instruments, New Castle, DE) of cowpea protein-corn starch blends in different ratios (R) at pH 7 and scanning rate 5°C min-1. (Courtesy of Okechukwu and Rao, 1996b.)... Figure 4 Differential scanning calorimetry endotherms (DSC model 2910, TA Instruments, New Castle, DE) of cowpea protein-corn starch blends in different ratios (R) at pH 7 and scanning rate 5°C min-1. (Courtesy of Okechukwu and Rao, 1996b.)...
Uijferential Scanning Calorimetry (DSC) Sample and inert reference materials are heated in such a way that the temperatures are always equal. If an exothermic reaction occurs in the sample, the sample heater requires less energy than the reference heater to maintain equal temperatures. If an endothermic reaction occurs, the sample heater requires more energy input than the reference heater. [Pg.2312]

Heating the crystalline salt 2-aminopyridinium propiolate (346) at 100 °C in the solid state led to a 10 9 mixture of 2/f-pyrido[l,2-n]pyrimidin-2-one and ( )-3-(2-imino-l,2-dihydro-l-pyridyl)acrylic acid (347). Analysis of differental scanning calorimetry data shows unambiguously that the reaction takes place in the solid state. An endothermic peak at 81.1 °C corresponds to a solid state reaction, and a peak at 122-123 °C is attributed to melting. The product ratio of 2//-pyrido[l, 2-n]pyrimidin-2-one and 347 is 1 2.5 at 60°C, and 1 1.4 at 80°C (94MI12). [Pg.242]

The SCB distribution (SCBD) has been extensively studied by fractionation based on compositional difference as well as molecular size. The analysis by cross fractionation, which involves stepwise separation of the molecules on the basis of composition and molecular size, has provided information of inter- and intramolecular SCBD in much detail. The temperature-rising elution fractionation (TREE) method, which separates polymer molecules according to their composition, has been used for HP LDPE it has been found that SCB composition is more or less uniform [24,25]. It can be observed from the appearance of only one melt endotherm peak in the analysis by differential scanning calorimetry (DSC) (Fig. 1) [26]. Wild et al. [27] reported that HP LDPE prepared by tubular reactor exhibits broader SCBD than that prepared by an autoclave reactor. The SCBD can also be varied by changing the polymerization conditions. From the cross fractionation of commercial HP LDPE samples, it has been found that low-MW species generally have more SCBs [13,24]. [Pg.278]

Using calorimetry to estimate the degree of filler-polymer interaction as described in [99] the authors of [318, 319] determined that the filler reaction with PVC is exothermic, which is indicative of a stronger bond in the polymer-filler system. No thermal effect was noted for mechanical mixtures, except for a few cases where it was endothermal. [Pg.46]

Structured proteins have also been investigated by thermal analysis [40,41], denaturing resulting in an endotherm which is readily detected by differential scanning calorimetry (DSC). DSC of recombinant resilin in the swollen state showed no transitions over a wide temperature range (25°C-140°C), further evidence of the absence of any strucmre. This is in contrast to the strucmred proteins wool and bovine serum albumin, which show denamration endotherms at 145°C and 62°C, respectively (Figure 9.6). [Pg.261]

Although there are other ways, one of the most convenient and rapid ways to measure AH is by differential scanning calorimetry. When the temperature is reached at which a phase transition occurs, heat is absorbed, so more heat must flow to the sample in order to keep the temperature equal to that of the reference. This produces a peak in the endothermic direction. If the transition is readily reversible, cooling the sample will result in heat being liberated as the sample is transformed into the original phase, and a peak in the exothermic direction will be observed. The area of the peak is proportional to the enthalpy change for transformation of the sample into the new phase. Before the sample is completely transformed into the new phase, the fraction transformed at a specific temperature can be determined by comparing the partial peak area up to that temperature to the total area. That fraction, a, determined as a function of temperature can be used as the variable for kinetic analysis of the transformation. [Pg.275]

If the observed AH is positive (endothermic reaction), the temperature of the sample will lag behind that of the reference. If the AH is negative (exothermic reaction), the temperature of the sample will exceed that of the reference. Owing to a variety of factors, DTA analysis is not normally used for quantitative work instead, it is used to deduce temperatures associated with thermal events. It can be a very useful adjunct to differential scanning calorimetry, since with most instrumentation DTA analysis can be performed in such a manner that corrosive... [Pg.228]

The results of differential scanning calorimetry(DSC) indicate the change in aggregation state. The trans micelle showed a main endothermic peak at 14 2°C(A H =1.0 kcal/mol), corresponding to a gel-liquid crystal phase transition, whereas the transition temperature for the cis micelle appeared at 11.9°C( AH = 0.8 kcal/mol). This is unequivocal evidence that the trans-cis photoisomerization is a sufficient perturbation to alter the state of molecular aggregation. [Pg.214]


See other pages where Calorimetry endotherm is mentioned: [Pg.10]    [Pg.10]    [Pg.445]    [Pg.258]    [Pg.328]    [Pg.68]    [Pg.184]    [Pg.189]    [Pg.400]    [Pg.599]    [Pg.601]    [Pg.618]    [Pg.75]    [Pg.88]    [Pg.109]    [Pg.278]    [Pg.30]    [Pg.267]    [Pg.70]    [Pg.165]    [Pg.61]    [Pg.77]    [Pg.28]    [Pg.88]    [Pg.425]    [Pg.146]    [Pg.68]    [Pg.332]    [Pg.238]    [Pg.89]    [Pg.14]    [Pg.164]    [Pg.313]    [Pg.228]    [Pg.6]    [Pg.214]    [Pg.72]    [Pg.91]    [Pg.437]    [Pg.170]    [Pg.149]    [Pg.272]   
See also in sourсe #XX -- [ Pg.416 ]




SEARCH



Differential scanning calorimetry endothermic peak

Differential scanning calorimetry endothermic transition

Endothermic process differential scanning calorimetry

Endothermicities

Endothermicity

Endotherms

© 2024 chempedia.info