Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calibration-curve-based analysis method development

Method development procedure for calibration-curve-based analysis. (Reproduced with permission from D. 6. Mitchell and J. S. Garden, Talanta, 1982, 29, 921-929, copyright 1982,... [Pg.130]

Whereas the use of conventional fast atom bombardment (FAB) in the analysis of polymer/additive extracts has been reported (see Section 6.2.4), the need for a glycerol (or other polar) matrix might render FAB-MS analysis of a dissolved polymer/additive system rather unattractive (high chemical background, high level of matrix-, solvent- and polymer-related ions, complicated spectra). Yet, in selected cases the method has proved quite successful. Lay and Miller [53] have developed an alternative method to the use of sample extraction, cleanup, followed by GC in the quantitative analysis of PVC/DEHP with plasticiser levels as typically found in consumer products (ca. 30 %). The method relied on addition of the internal standard didecylphthalate (DDP) to a THF solution of the PVC sample with FAB-MS quantitation based on the relative signal levels of the [MH]+ ions of DEHP and DDP obtained from full-scan spectra, and on the use of a calibration curve (intensity ratio m/z 391/447 vs. mg DEHP/mg DDP). No FAB-matrix was added. No ions associated with the bulk of the PVC polymer were observed. It was... [Pg.702]

Alemu et al. [35] developed a very sensitive and selective procedure for the determination of niclosamide based on square-wave voltammetry at a glassy carbon electrode. Cyclic voltammetry was used to investigate the electrochemical reduction of niclosamide at a glassy carbon electrode. Niclosamide was first irreversibly reduced from N02 to NHOH at —0.659 V in aqueous buffer solution of pH 8.5. Following optimization of the voltammetric parameters, pH and reproducibility, a linear calibration curve over the range 5 x 10 x to 1 x 10-6 mol/dm3 was achieved, with a detection limit of 2.05 x 10-8 mol/dm3 niclosamide. The results of the analysis suggested that the proposed method has promise for the routine determination of niclosamide in the products examined [35]. [Pg.83]

The idea of calorimetry is based on the chemical reaction characteristic of molecules. The calorimetry method does not allow absolute measurements, as is the case, for example, with volumetric methods. The results given by unknown compounds must be compared with the calibration curve prepared from known amounts of pure standard compounds under the same conditions. In practical laboratory work there are very different applications of this method, because there is no general rule for reporting results of calorimetric determinations. A conventional spectrophotometry is used with a calorimeter. The limitations of many calometric procedures lie in the chemical reactions upon which these procedures are based rather than upon the instruments available . This method was first adapted for quinolizidine alkaloid analysis in 1940 by Prudhomme, and subsequently used and developed by many authors. In particular, a calorimetric microdetermination of lupine and sparteine was developed in 1957. The micromethod depends upon the reaction between the alkaloid bases and methyl range in chloroform. [Pg.132]

IQiowledge of parameters such as reactivity ratios, is necessary for synthesis of polymer based resists, and an accurate method of analysis should be useful in various areas associated with resist development such as quality control. Raman spectroscopy provides a convenient, absolute, nondestructive method for compositional analysis of polymer systems which, if an internal standard is present, does not require standards of known composition or ancillary calibration curves. The accuracy, with appropriate selection of experimental conditions such as slit width and integration time, is limited only by the instrumentation. [Pg.58]

An important extension of our large validation studies involves the use of data bases from field studies in the development of improved statistical methods for a variety of problems in quantitative applications of immunoassays. These problems include the preparation and analysis of calibration curves, treatment of "outliers" and values below detection limits, and the optimization of resource allocation in the analytical procedure. This last area is a difficult one because of the multiple level nested designs frequently used in large studies such as ours (22.). We have developed collaborations with David Rocke and Davis Bunch (statisticians and numerical analysts at Davis) in order to address these problems within the context of working assays. Hopefully we also can address the mathematical basis of using multiple immunoassays as biochemical "tasters" to approach multianalyte situations. [Pg.129]


See other pages where Calibration-curve-based analysis method development is mentioned: [Pg.94]    [Pg.446]    [Pg.14]    [Pg.113]    [Pg.202]    [Pg.272]    [Pg.283]    [Pg.126]    [Pg.151]    [Pg.202]    [Pg.283]    [Pg.67]    [Pg.58]    [Pg.81]    [Pg.338]    [Pg.1216]    [Pg.208]    [Pg.1048]    [Pg.137]    [Pg.1048]    [Pg.67]    [Pg.72]    [Pg.28]    [Pg.34]    [Pg.264]    [Pg.308]    [Pg.28]    [Pg.129]   
See also in sourсe #XX -- [ Pg.130 ]




SEARCH



Calibration Curve Method

Calibration analysis

Calibration curve

Calibration curve analysis

Calibration development

Calibration method development

Calibration-curve-based analysis

Calibrations developing

Curve Method

Method calibration

Method development

© 2024 chempedia.info