Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium solute tracer

Groundwater-inflow rates as calculated by the solute and isotope mass-balance methods for several northern Wisconsin lakes are listed in Table I. Dissolved calcium was used as the solute tracer because it is the constituent whose concentration differs the most between groundwater and precipitation, the two input components to be separated by the method. In addition, calcium is nearly conservative in the soft-water, moderately acidic to cir-cum-neutral lakes in northern Wisconsin. Results from the two methods agree relatively well, except for Crystal Lake, where groundwater-flow reversals are frequent. [Pg.93]

The isotope mass-balance method is not as useful for estimating groundwater-flow rates for groundwater-poor lakes as it is for lakes that receive substantial quantities of groundwater. Solute tracers, such as dissolved calcium, may be useful in assessing... [Pg.94]

Glaser and Lichtenstein (G3) measured the liquid residence-time distribution for cocurrent downward flow of gas and liquid in columns of -in., 2-in., and 1-ft diameter packed with porous or nonporous -pg-in. or -in. cylindrical packings. The fluid media were an aqueous calcium chloride solution and air in one series of experiments and kerosene and hydrogen in another. Pulses of radioactive tracer (carbon-12, phosphorous-32, or rubi-dium-86) were injected outside the column, and the effluent concentration measured by Geiger counter. Axial dispersion was characterized by variability (defined as the standard deviation of residence time divided by the average residence time), and corrections for end effects were included in the analysis. The experiments indicate no effect of bed diameter upon variability. For a packed bed of porous particles, variability was found to consist of three components (1) Variability due to bulk flow through the bed... [Pg.98]

Figure 1. Schematic representation of the calcium mass spectrum in (a) natural materials, (b) a Ca- Ca tracer solution used for separating natural mass dependent isotopic fractionation from mass discrimination caused by thermal ionization, and (c) a typical mixture of natiwal calcium and tocer calcium used for analysis. The tracer solution has roughly equal amounts of Ca and Ca. In (c) the relative isotopic abundances are shown with an expanded scale. Note that in the mixed sample, masses 42 and 48 are predominantly from the tracer solution, and masses 40 and 44 are almost entirely from natural calcium. This situation enables the instrumental fractionation to be gauged from the Ca/ Ca ratio, and the natural fractionation to be gauged from the sample Ca/ Ca ratio. Figure 1. Schematic representation of the calcium mass spectrum in (a) natural materials, (b) a Ca- Ca tracer solution used for separating natural mass dependent isotopic fractionation from mass discrimination caused by thermal ionization, and (c) a typical mixture of natiwal calcium and tocer calcium used for analysis. The tracer solution has roughly equal amounts of Ca and Ca. In (c) the relative isotopic abundances are shown with an expanded scale. Note that in the mixed sample, masses 42 and 48 are predominantly from the tracer solution, and masses 40 and 44 are almost entirely from natural calcium. This situation enables the instrumental fractionation to be gauged from the Ca/ Ca ratio, and the natural fractionation to be gauged from the sample Ca/ Ca ratio.
Using the three measured ratios, Ca/ Ca, Ca/ " Ca and Ca/ " Ca, three unknowns can be solved for the tracer/sample ratio, the mass discrimination, and the sample Ca/ Ca ratio (see also Johnson and Beard 1999 Heuser et al. 2002). Solution of the equations is done iteratively. It is assumed that the isotopic composition of the Ca- Ca tracer is known perfectly, based on a separate measurement of the pure spike solution. Initially it is also assumed that the sample calcium has a normal Ca isotopic composition (equivalent to the isotope ratios listed in Table 1). The Ca/ Ca ratio of the tracer is determined based on the results of the mass spectrometry on the tracer-sample mixture, by calculating the effect of removing the sample Ca. This yields a Ca/ Ca ratio for the tracer, which is in general different from that previously determined for the tracer. This difference is attributed to mass discrimination in the spectrometer ion source and is used to calculate a first approximation to the parameter p which describes the instrumental mass discrimination (see below). The first-approximation p is used to correct the measured isotope ratios for mass discrimination, and then a first-approximation tracer/sample ratio and a first-approximation sample CeJ Ca... [Pg.259]

Reconstituted acid-soluble collagen from various mineralized and unmineralized tissues have been examined for their potential to pick up calcium and phosphate from buffered solutions, and for their capacity to induce nucleation of a mineral phase426-434. Some collagens were good, others poor catalysts428,429 and apatite deposition proceeded in the presence of soft as well as of hard tissue collagens. The uptake of calcium ions requires the presence of phosphate ions and vice versa the Ca/P ratio is close to that of apatite (1.5—1.8)431. Study of exchange reactions by isotope tracers between solvent und substrate revealed that in absence of either... [Pg.70]

Chloride behaves like an ideal tracer and is only affected by dispersion. Calcium is still not in solution even after a single exchange of all water within the column (shift = 40) as it is exchanged for Na and K. When all sodium has been removed from the exchanger, Ca can only be exchanged for K that leads to a peak in the K-concentration. Only after the water of the column has been exchanged about 2.5 times, the concentration of calcium increases at the outlet. [Pg.107]


See other pages where Calcium solute tracer is mentioned: [Pg.22]    [Pg.233]    [Pg.331]    [Pg.139]    [Pg.52]    [Pg.288]    [Pg.300]    [Pg.96]    [Pg.105]    [Pg.32]    [Pg.233]    [Pg.331]    [Pg.2619]    [Pg.54]    [Pg.495]    [Pg.534]    [Pg.148]    [Pg.449]    [Pg.407]    [Pg.194]    [Pg.182]    [Pg.592]    [Pg.696]    [Pg.111]    [Pg.152]   
See also in sourсe #XX -- [ Pg.87 ]




SEARCH



Solutions tracers

© 2024 chempedia.info