Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

By the reaction of nitrile oxides

Alkyl and silyl nitronates are, in principle, /V-alkoxy and /V-silyloxynitrones, and they can react with alkenes in 1,3-dipolar cycloadditions to form /V-alkoxy- or /V-silyloxyisoxaz.olidine (see Scheme 8.25). The alkoxy and silyloxy groups can be eliminated from the adduct on heating or by acid treatment to form 2-isoxazolines. It should be noticed that isoxazolines are also obtained by the reaction of nitrile oxides with alkenes thus, nitronates can be considered as synthetic equivalents of nitrile oxides. Since the pioneering work by Torssell et al. on the development of silyl nitronates, this type of reaction has become a useful synthetic tool. Recent development for generation of cyclic nitronates by hetero Diels-Alder reactions of nitroalkenes is discussed in Section 8.3. [Pg.267]

Several 4-(3-alkyl-2-isoxazolin-5-yl)phenol derivatives that possess liquid crystal properties have also been obtained (533-535). In particular, target compounds such as 463 (R = pentyl, nonyl) have been prepared by the reaction of 4-acetoxystyrene with the nitrile oxide derived from hexanal oxime, followed by alkaline hydrolysis of the acetate and esterification (535). A homologous series of 3-[4-alkyloxyphenyl]-5-[3,4-methylenedioxybenzyl]-2-isoxazolines, having chiral properties has been synthesized by the reaction of nitrile oxides, from the dehydrogenation of 4-alkyloxybenzaldoximes. These compounds exhibit cholesteric phase or chiral nematic phase (N ), smectic A (S4), and chiral smectic phases (Sc ), some at or just above room temperature (536). [Pg.107]

An unusual synthesis of 4,5-dichloro-6,6-dimethyl-6/f-l,2-oxazines is provided by the reaction of nitrile oxides with l,2-dichloro-3,3-dimethylcyclopropene <93JCS(Pi)2507>. This reaction apparently involves an acyclic vinylcarbene isomer of the cyclopropene (Scheme 17). [Pg.298]

Stannous fluoride probably was first prepared by Scheele in 1771 and was described by Gay-Lussac and Thenard in 1809. Commercial production of stannous fluoride is by the reaction of stannous oxide and aqueous hydrofluoric acid, or metallic tin and anhydrous hydrogen fluoride (5,6). Snp2 is also produced by the reaction of tin metal, HP, and a halogen in the presence of a nitrile (7). [Pg.253]

Benzo-flw-triazine tri-N-oxides 384 (R = H, Me R1 = mesityl, 2,6-ClC6H3) are formed from the reaction of nitrile oxides R CNO with benzofuroxans 385. The structure of 384 (R = Me, R1 = mesityl) has been confirmed by X-ray crystal structure analysis (431). [Pg.81]

Another cycloaddition to an a,(3-unsaturated compound involves the reaction of nitrile oxides with 3-methoxy- or 3-methylthio-1 -phenyl-2-propene-1 -one (Scheme 6.18) (133,134). The isoxazoles that are isolated are considered to arise from the respective intermediate isoxazolines by subsequent elimination of methanol or methanethiol. The regioselectivity observed was attributed to the presence of substituents with strong electron-donating ability, and this was accommodated in terms of the FMO theory (133,134). [Pg.384]

Control of reaction selectivities with external reagents has been quite difficult. Unsolved problems remaining in the held of nitrile oxide cycloadditions are (a) Nitrile oxide cycloadditions to 1,2-disubstituted alkenes are sluggish, the dipoles undergoing facile dimerization to furoxans in most cases (b) the reactions of nitrile oxides with 1,2-disubstituted alkenes nonregioselective (c) stereo- and regiocontrol of this reaction by use of external reagents are not yet well developed and (d) there are few examples of catalysis by Lewis acids known, as is true for catalyzed enantioselective reactions. [Pg.779]

The camphor-derived chiral acrylate 160a was used in reactions with nitrones by Olsson (272) (Scheme 12.51). They observed low endo/exo-selectivity, but excellent diastereofacial discrimination in the reactions of cyclic nitrones with 160a. They also studied the reactions of nitrile oxides with 160a,b. Fair selectivity of up to 68-75% de was obtained. However, for the reaction of the crotonyl derivative 160b with nitrile oxides, mixtures of regiomers were obtained. [Pg.853]

The a,p-unsaturated amides 180-188a have all been used in 1,3-dipolar cycloadditions with nitrile oxides, and some of them represent the most diastereoselective reactions of nitrile oxides. The camphor derivative 180 of Chen and co-workers (294), the sultam 181 of Oppolzer et al. (295), and the two Kemp s acid derived compounds 186 (296) and 187 (297) described by Curran et al. (296) are excellent partners for diastereoselective reactions with nitrile oxides, as very high diastereos-electivities have been observed for all of them. In particular, compound 186 gave, with few exceptions, complete diastereoselection in reactions with a wide range of different nitrile oxides. Good selectivities were also observed when using compounds 183 (298) and 184 (299-301) in nitrile oxide cycloadditions, and they have the advantage that they are more readily available. Curran and co-workers also studied the 1,3-dipolar cycloaddition of 187 with silyl nitronates. However, compared to the reactions of nitrile oxides, lower selectivities of up to 86% de were obtained (302). [Pg.857]

A cycloreversion mechanism is suggested for the transformation of the nonisolable cycloadduct 90 to the aldehyde 91 and isothiocyanate 92 <1996BCJ719> and for the spiro-1,4,2-oxathiazole intermediates 94 to the dioxothiazoline 95 and the aryl isothiocyanate 92 <2001MOL510>. Both cycloadducts are obtained by cycloaddition reactions of nitrile oxides 88 to thiocarbonyl compounds (Scheme 12). [Pg.122]

The potential of the reaction of nitrile oxides with alkynes was already recognized at the time of the earlier review.1 The realization of that potential was apparent 7 years later in the comprehensive account by Grundmann and Griinanger.59 In Table II we list a selection of the syntheses reported in the period 1970-1978, illustrating new applications of the method and some of the generalizations discussed.59,71,84,89,91-100... [Pg.162]

The general characteristics of the reactions of nitrile oxides with alkenes resemble those of the reactions with alkynes.59 The main differences are (i) that there is no evidence for a two-stage mechanism (1,3-addition followed by cyclization) and (ii) that although they are generally regioselective, they are not always markedly so. A further characteristic is that they are stereospecific with respect to the alkene, whose geometry is preserved in the product. [Pg.163]

The reaction of nitrile oxides prepared in situ by dehydration of aliphatic nitro compounds with triethylamine and phenyl isocyanate with allylic alcohols proceeds with low stereocontrol to give a predominance of the /-product. Allyl ethers as the dipolarophiles can lead to high excesses of the y-cycloadducts, with the stereoselection increasing with increasing bulkiness of the alkyl residue at the stereocenter. [Pg.766]

The formation of 4//-l,2,4-benzoxadiazines by the aetion of nitrile oxides on A -aryl-5,S -dialkyl-sulfimides (190) is a well-established procedure <76JCS(Pi)2l6l, 78BCJ563>. Results in 1983, however, demonstrate that the reaction is sensitive to the nature of the substituents on the aryl ring of the sulfimide <83BCJ1514>. Thus, whereas the reaetions of A(-(4-bromophenyl)-5,S-dimethylsulfimide... [Pg.668]

Weak to moderate chemiluminescence has been reported from a large number of other Hquid-phase oxidation reactions (1,128,136). The Hst includes reactions of carbenes with oxygen (137), phenanthrene quinone with oxygen in alkaline ethanol (138), coumarin derivatives with hydrogen peroxide in acetic acid (139), nitriles with alkaline hydrogen peroxide (140), and reactions that produce electron-accepting radicals such as HO in the presence of carbonate ions (141). In the latter, exemplified by the reaction of h on(II) with H2O2 and KHCO, the carbonate radical anion is probably a key intermediate and may account for many observations of weak chemiluminescence in oxidation reactions. [Pg.269]

Other modifications of the polyamines include limited addition of alkylene oxide to yield the corresponding hydroxyalkyl derivatives (225) and cyanoethylation of DETA or TETA, usuaHy by reaction with acrylonitrile [107-13-1/, to give derivatives providing longer pot Hfe and better wetting of glass (226). Also included are ketimines, made by the reaction of EDA with acetone for example. These derivatives can also be hydrogenated, as in the case of the equimolar adducts of DETA and methyl isobutyl ketone [108-10-1] or methyl isoamyl ketone [110-12-3] (221 or used as is to provide moisture cure performance. Mannich bases prepared from a phenol, formaldehyde and a polyamine are also used, such as the hardener prepared from cresol, DETA, and formaldehyde (228). Other modifications of polyamines for use as epoxy hardeners include reaction with aldehydes (229), epoxidized fatty nitriles (230), aromatic monoisocyanates (231), or propylene sulfide [1072-43-1] (232). [Pg.47]

The two major methods of preparation are the cycloaddition of nitrile oxides to alkenes and the reaction of a,/3-unsaturated ketones with hydroxylamines. Additional methods include reaction of /3-haloketones and hydroxylamine, the reaction of ylides with nitrile oxides by activation of alkyl nitro compounds from isoxazoline AT-oxides (methoxides, etc.) and miscellaneous syntheses (62HC(i7)i). [Pg.88]

Isoxazolin-5-imines were produced by nitrile oxide addition to cyanoacetates (62HC(17)l,p.7), by the reaction of nitrones with phenylacetonitrile (74CB13), and by base addition of nitrosobenzene to nitriles (Scheme 148) (72LA(762)154). [Pg.105]

The reaction of vinylogous amides, or ketoaldehydes, with hydroxylamine produced 4,5,6,7-tetrahydro-l,2-benzisoxazole. A side product is the 2,1-benzisoxazole (Scheme 173) (67AHC(8)277). The ring system can also be prepared by the reaction of cyclohexanone enamines with nitrile oxides (Scheme 173) (78S43, 74KGS901). Base treatment produced ring fission products and photolysis resulted in isomerization to benzoxazoles (76JOC13). [Pg.118]

The first, and so far only, metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction of nitrile oxides with alkenes was reported by Ukaji et al. [76, 77]. Upon treatment of allyl alcohol 45 with diethylzinc and (l ,J )-diisopropyltartrate, followed by the addition of diethylzinc and substituted hydroximoyl chlorides 46, the isoxazolidines 47 are formed with impressive enantioselectivities of up to 96% ee (Scheme 6.33) [76]. [Pg.235]

An in situ infrared investigation has been conducted of the reduction of NO by CH4 over Co-ZSM-5. In the presence of O2, NO2 is formed via the oxidation of NO. Adsorbed NO2 then reacts with CH4. Nitrile species are observed and found to react very rapidly with NO2, and at a somewhat slower rate with NO and O2. The dynamics of the disappearance of CN species suggests that they are reactive intermediates, and that N2 and CO2 are produced by the reaction of CN species with NO2. While isocyanate species are also observed, these species are associated with A1 atoms in the zeolite lattice and do not act as reaction intermediates. A mechanism for NO reduction is proposed that explains why O2 facilitates the reduction of NO by CH4, and why NO facilitates the oxidation of CH4 by O2. [Pg.661]

The first application of microwave irradiation in conjunction with dry media in the generation of nitrile oxide intermediates was reported by Hamelin [29]. In this example, methyl nitroacetate (170) was mixed with a dipolarophile in the presence of catalytic amounts of toluene-p-sulfonic acid (PTSA) (10% weight). Subsequent microwave irradiation led to the formation of the corresponding heterocyclic adducts (Scheme 9.52). Reactions were performed in an open vessel from which water was continuously removed [103], Likewise, irradiation in a domestic oven of a mixture of ethyl chloro(hydroxyimino)acetate (173) and a dipolarophile over alumina led to the same results in only a few minutes (Scheme 9.52) [103]. [Pg.326]


See other pages where By the reaction of nitrile oxides is mentioned: [Pg.104]    [Pg.104]    [Pg.104]    [Pg.1184]    [Pg.104]    [Pg.104]    [Pg.104]    [Pg.1184]    [Pg.219]    [Pg.221]    [Pg.462]    [Pg.462]    [Pg.442]    [Pg.67]    [Pg.69]    [Pg.87]    [Pg.88]    [Pg.89]    [Pg.213]    [Pg.551]    [Pg.70]    [Pg.20]    [Pg.668]    [Pg.221]    [Pg.5]    [Pg.16]    [Pg.20]   


SEARCH



Nitrile oxides

Nitrile oxides, reactions

Nitriles nitrile oxides

Nitriles reactions

Oxidation of nitriles

Oxidative nitriles

Reactions of Nitrile Oxides

The Oxidative Reaction

© 2024 chempedia.info