Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Buoyant contaminant sources

Airborne contaminant movement in the building depends upon the type of heat and contaminant sources, which can be classified as (1) buoyant (e.g., heat) sources, (2) nonbuoyant (diffusion) sources, and (d) dynamic sources.- With the first type of sources, contaminants move in the space primarily due to the heat energy as buoyant plumes over the heated surfaces. The second type of sources is characterized by cimtaminant diffusion in the room in all directions due to the concentration gradient in all directions (e.g., in the case of emission from painted surfaces). The emission rare in this case is significantly affected by the intensity of the ambient air turbulence and air velocity, dhe third type of sources is characterized by contaminant movement in the space with an air jet (e.g., linear jet over the tank with a push-pull ventilation), or particle flow (e.g., from a grinding wheel). In some cases, the above factors influencing contaminant distribution in the room are combined. [Pg.419]

The key variable in determining the applicability of a receptor hood to a particular source is the temperature of the heated source, and the resulting updraft. The temperature must be high enough to cause an appreciable updraft, or the hood will be ineffective. An estimate must be made of the total amount of buoyant airflow set in motion by the heated source the airflow through the hood must be greater than this buoyant airflow, in order to ensure complete contaminant capture. This principle is illustrated in Fig. 10.32, which shows the air spill that occurs when a hood s exhaust airflow is less than the thermal updraft airflow. [Pg.866]

The use of canopy hoods or remote capture of fume is usually considered only after the rejection of source or local hood capture concepts. The common reasons for rejecting source or local hood capture are usually operating interference problems or layout constraints. In almost all cases, a canopy hood system represents an expensive fume collection approach from both capital and opetating cost considerations. Remote capture depends on buoyant ait curtents to carry the contaminated gas to a canopy hood. The rising fume on its way to the hood is often subjected to cross-drafts within the ptocess buildings or deflected away from the hood by objects such as cranes. For many of these canopy systems, the capture efficiency of fume may be as low as 30-50%. [Pg.1279]


See other pages where Buoyant contaminant sources is mentioned: [Pg.192]    [Pg.351]    [Pg.243]    [Pg.54]   
See also in sourсe #XX -- [ Pg.422 ]




SEARCH



Contaminated sources

Contamination sources

© 2024 chempedia.info