Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bulk reaction medium

Partition and mass transfer limitation make the substrate (and product) concentration in contact with the enzyme different from that in the bulk reaction medium producing the corresponding profiles, as shown in Eig. 4.5. Partition produces a discontinuity of the profiles at the medium-biocatalyst interface while mass transfer limitations produce profiles in the immediate vicinity of that surface and on the inside of the biocatalyst support (if allowed to host the enzyme). [Pg.170]

Yo dimensionless product concenttation in bulk reaction medium... [Pg.248]

A catalyst changes the rate of a reaction compared to the rate of the same reaction under the same reaction conditions, bnt in the absence of catalyst. The effect of the catalyst on the reaction rate might be caused by either the catalyst providing a different microreaction environment compared with the bulk reaction medium... [Pg.400]

Bead Polymerization Bulk reaction proceeds in independent droplets of 10 to 1,000 [Lm diameter suspended in water or other medium and insulated from each other by some colloid. A typical suspending agent is polyvinyl alcohol dissolved in water. The polymerization can be done to high conversion. Temperature control is easy because of the moderating thermal effect of the water and its low viscosity. The suspensions sometimes are unstable and agitation may be critical. Only batch reaciors appear to be in industrial use polyvinyl acetate in methanol, copolymers of acrylates and methacrylates, polyacrylonitrile in aqueous ZnCh solution, and others. Bead polymerization of styrene takes 8 to 12 h. [Pg.2102]

The importance of the cage reaction increases according to the viscosity of the reaction medium. This contributes to a decrease in initiator efficiency with conversion. 15 1 155 Stickler and Dumont156 determined the initiator efficiency during bulk MMA polymerization at high conversions ca 80%) to be in the range 0.1-0.2 depending on the polymerization temperature. The main initiator-derived byproduct was phenyl benzoate. [Pg.84]

One final point should be made. The observation of significant solvent effects on kp in homopolymerization and on reactivity ratios in copolymerization (Section 8.3.1) calls into question the methods for reactivity ratio measurement which rely on evaluation of the polymer composition for various monomer feed ratios (Section 7.3.2). If solvent effects arc significant, it would seem to follow that reactivity ratios in bulk copolymerization should be a function of the feed composition.138 Moreover, since the reaction medium alters with conversion, the reactivity ratios may also vary with conversion. Thus the two most common sources of data used in reactivity ratio determination (i.e. low conversion composition measurements and composition conversion measurements) are potentially flawed. A corollary of this statement also provides one explanation for any failure of reactivity ratios to predict copolymer composition at high conversion. The effect of solvents on radical copolymerization remains an area in need of further research. [Pg.361]

High-temperature bulk reactions, 63 High-temperature condensation, in cresolic medium, 302... [Pg.585]

Bulk polymerization of di-n-butyl-bis-(y-glycidyloxypropyl)stannane in the air or in benzene as reaction medium at 30 °C results in a gradual increase in viscosity and precipitation of a white powder in quantitative yield. The polymerization product... [Pg.130]

The results indicate that the zeolite can selectively extract specific compounds from the reaction medium, due to the different affinity towards each of them. This makes possible to develop reactant concentrations inside pores which are different from the bulk ones. This property is a function of the zeolite hydrophobic characteristics, which are affected by the Si/Al ratio. The best zeolite is that one which does not interact too strongly neither with more polar molecules, so to allow activation of formaldehyde to proceed faster, nor with the least polar ones. The intermediate Si/Al ratio in H-mordenites is able to develop the optimal concentration ratio between reactants inside the pores, and to reach the highest yield to vanillols. [Pg.360]

Homogeneous catalytic processes are those in which the catalyst is dissolved in a liquid reaction medium. There are a variety of chemical species that may act as homogeneous catalysts (e.g., anions, cations, neutral species, association complexes, and enzymes). All such reactions appear to involve a chemical interaction between the catalyst and the substrate (the substance undergoing reaction). The bulk of the material in this section will focus on acid-base and enzyme catalysis. Students interested in learning more about these subjects and other aspects of homogeneous catalysis should consult appropriate texts (11-12, 16-29) or the original literature. [Pg.220]

Kinetic treatments are usually based on the assumption that reaction does not occur across the micelle-water interface. In other words a bimolecular reaction occurs between reactants in the Stern layer, or in the bulk aqueous medium. Thus the properties of the Stem layer are of key importance to the kineticist, and various probes have been devised for their study. Unfortunately, many of the probes are themselves kinetic, so it is hard to avoid circular arguments. However, the charge transfer and fluorescence spectra of micellar-bound indicators suggest that the micellar surface is less polar than water (Cordes and Gitler, 1973 Fernandez and Fromherz, 1977 Ramachan-dran et al., 1982). [Pg.221]

Micellar catalysis, conducted in the absence of Lewis acid tends to inhibit the Diels-Alder reaction, relative to the reaction in water. The reason is that the local reaction medium in the Stern region is less favorable than bulk water. However, by combining Lewis-acid and micellar catalysis, enzyme-hke rate accelerations can be obtained (Table 7.5) in case the Lewis acid acts as the counterion for the miceUe. " ... [Pg.168]

The occurrence of an optimum frequency at 200 kHz was explained through a two step reaction pathway. In the first step water sonolysis produces radicals within the bubble. In step two the radicals must migrate to the bubble interface or into the bulk aqueous medium to form peroxide or react with the phenolic substrate. The authors suggest that the lower frequencies are the most efficient for the decomposition of molecules inside the bubble but a proportion of the radicals recombine inside the bubble at high temperature to form water thereby reducing the overall yield of H2O2 (Eqs.4.1 and 4.2). [Pg.140]

As for chemical reactions, the reduction/oxidation (redox) reactions in an homogeneous medium (i.e., in the bulk of the solution) have been experimentally studied with proper intensity only in the past decades. There has been some development of the bulk reactions. However, as earlier, a comparison of the same compound in chemical and electrochemical electron/charge-transfer reactions is still of current interest. Such a comparison is made in this section. The examples offered are intended to invoke novel interpretations or discover new colors in pictures, which have already been drawn. [Pg.96]

Stilbene derivatives can be reduced with alkali metals in liquid ammonia. The reaction is usually performed in a homogeneous medium to give substituted diphenylethane compounds as a mixture of enantiomeric forms. However, there are compounds (particularly, biologically active ones) for which the stereospecificity of synthesis has decisive importance. A simple modification of the reduction method with an alkali metal in liquid ammonia was found (Collins and Hobbs 1983), which makes it possible to perform the process stereoselectively. The metal is not predissolved, as is usual, but is added in small portions without trying to make the reaction medium homogeneous. Stereoselectivity is ensured by carrying out the reduction on the surface of the metal and not in the solution bulk. [Pg.349]

More recently two different araroaches have given successful results in the preparation of similar structures. One of these was based on the use of a single monomer, viz. 5-hydroxymethyl-2-ethyl furanaciylate 16. This compound is readily obtained from HMF (29) and polymerizes in bulk or in solution by transesterification under mild catalytic conditions and at temperatures below 100°C (30). The polymers crystallize during the synthesis and precipitate out of the reaction medium. They possess the regular structure 22 and melt at about 180°C ... [Pg.203]

Since then, the process has been extended to a wide variety of lactones of different size and to several lipases, as recently reviewed [93-96]. Interestingly, large-membered lactones, which are very difficult to polymerize by usual anionic and coordination polymerizations due to the low ring strain, are successfully polymerized by enzymes. Among the different lipases available, that fi om Candida antarctica (lipase CA, CALB or Novozym 435) is the most widely used due to its high activity. An alcohol can purposely be added to the reaction medium to initiate the polymerization instead of water. The polymerization can be carried out in bulk, in organic solvents, in water, and in ionic liquids. Interestingly, Kobayashi and coworkers reported in 2001 the ROP of lactones by lipase CA in supercritical CO2... [Pg.193]

Deviations are also observed in some copolymerizations where the copolymer formed is poorly soluble in the reaction medium [Pichot and Pham, 1979 Pichot et al., 1979 Suggate, 1978, 1979]. Under these conditions, altered copolymer compositions are observed if one of the monomers is preferentially adsorbed by the copolymer. Thus for methyl methacrylate (M1 )-/V-vinylcarbazole (M2) copolymerization, r — 1.80, r2 = 0.06 in benzene but r — 0.57, > 2 0.75 in methanol [Ledwith et al., 1979]. The propagating copolymer chains are completely soluble in benzene but are microheterogeneous in methanol. /V-vinylcarba-zole (NVC) is preferentially adsorbed by the copolymer compared to methyl methacrylate. The comonomer composition in the domain of the propagating radical sites (trapped in the precipitating copolymer) is richer in NVC than the comonomer feed composition in the bulk solution. NVC enters the copolymer to a greater extent than expected on the basis of feed composition. Similar results occur in template copolymerization (Sec. 3-10d-2), where two monomers undergo copolymerization in the presence of a polymer. Thus, acrylic acid-2-hydroxyethylmethacrylate copolymerization in the presence of poly(V-vinylpyrrolidone) results in increased incorporation of acrylic acid [Rainaldi et al., 2000]. [Pg.488]


See other pages where Bulk reaction medium is mentioned: [Pg.55]    [Pg.1397]    [Pg.170]    [Pg.172]    [Pg.196]    [Pg.196]    [Pg.247]    [Pg.248]    [Pg.41]    [Pg.55]    [Pg.1397]    [Pg.170]    [Pg.172]    [Pg.196]    [Pg.196]    [Pg.247]    [Pg.248]    [Pg.41]    [Pg.167]    [Pg.279]    [Pg.429]    [Pg.189]    [Pg.492]    [Pg.261]    [Pg.329]    [Pg.61]    [Pg.64]    [Pg.66]    [Pg.66]    [Pg.178]    [Pg.472]    [Pg.133]    [Pg.511]    [Pg.233]    [Pg.15]    [Pg.295]    [Pg.298]    [Pg.488]    [Pg.489]    [Pg.9]    [Pg.56]   
See also in sourсe #XX -- [ Pg.170 , Pg.172 , Pg.196 , Pg.247 , Pg.248 ]




SEARCH



Bulk reactions

Medium, reaction

© 2024 chempedia.info