Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boundary conditions ordering

At first, in order to use some standard results from the theory of the Radon transform, we restrict the analysis to 2-D tensor fields whose elements belong to either the space of rapidly decreasing C° functions or the space of compactly supported C°° functions. Thus, some of the detailed issues associated with the boundary conditions are avoided. [Pg.132]

A fiill solution of tlie nonlinear radiation follows from the Maxwell equations. The general case of radiation from a second-order nonlinear material of finite thickness was solved by Bloembergen and Pershan in 1962 [40]. That problem reduces to the present one if we let the interfacial thickness approach zero. Other equivalent solutions involved tlie application of the boundary conditions for a polarization sheet [14] or the... [Pg.1277]

Isolated gas ph ase molecules are th e sim plest to treat com pii tation -ally. Much, if not most, ch emistry lakes place in the liq iiid or solid state, however. To treat these condensed phases, you must simulate continnons, constant density, macroscopic conditions. The usual approach is to invoke periodic boundary conditions. These simulate a large system (order of 10" inoleeti les) as a contiruiotis replication in all direction s of a sm nII box, On ly th e m olceti Ics in the single small box are simulated and the other boxes arc just copies of the single box. [Pg.200]

Therefore the second-order derivative of/ appearing in the original form of / is replaced by a term involving first-order derivatives of w and/plus a boundary term. The boundary terms are, normally, cancelled out through the assembly of the elemental stiffness equations over the common nodes on the shared interior element sides and only appear on the outside boundaries of the solution domain. However, as is shown later in this chapter, the appropriate treatment of these integrals along the outside boundaries of the flow domain depends on the prescribed boundary conditions. [Pg.78]

The spherical geometry assumed in the Stokes and Einstein derivations gives the highly symmetrical boundary conditions favored by theoreticians. For ellipsoids of revolution having an axial ratio a/b, friction factors have been derived by F. Perrin, and the coefficient of the first-order term in Eq. (9.9) has been derived by Simha. In both cases the calculated quantities increase as the axial ratio increases above unity. For spheres, a/b = 1. [Pg.590]

The dependence of solutions to (5.79)-(5.82) on the parameters a, 5 is not indicated at this step in order to simplify the formulae. Note that boundary conditions (5.81) do not coincide with (5.71) the conditions (5.81) can be viewed as a regularization of (5.71) connected with the proposed regularization of the equilibrium equations (5.68). Also, the artificial initial condition for o is introduced. [Pg.310]

Boundary conditions (5.81) can be taken into account here in order to integrate by parts in the left-hand side. Next we can integrate the inequality obtained in t from 0 to t. This implies... [Pg.312]

Because the Navier-Stokes equations are first-order in pressure and second-order in velocity, their solution requires one pressure bound-aiy condition and two velocity boundaiy conditions (for each velocity component) to completely specify the solution. The no sBp condition, whicn requires that the fluid velocity equal the velocity or any bounding solid surface, occurs in most problems. Specification of velocity is a type of boundary condition sometimes called a Dirichlet condition. Often boundary conditions involve stresses, and thus velocity gradients, rather than the velocities themselves. Specification of velocity derivatives is a Neumann boundary condition. For example, at the boundary between a viscous liquid and a gas, it is often assumed that the liquid shear stresses are zero. In numerical solution of the Navier-... [Pg.634]

With these two-point boundary conditions the dispersion equation, Eq. (23-50), may be integrated by the shooting method. Numerical solutions for first- and second-order reaciions are plotted in Fig. 23-15. [Pg.2089]

These equations form a fourth-order system of differential equations which cannot be solved analytically in almost all interesting nonseparable cases. Further, according to these equations, the particle slides from the hump of the upside-down potential — V(Q) (see fig. 24), and, unless the initial conditions are specially chosen, it exercises an infinite aperiodic motion. In other words, the instanton trajectory with the required periodic boundary conditions,... [Pg.60]

For a first order reaction (-r ) = kC, and Equation 8-147 is then linear, has constant coefficients, and is homogeneous. The solution of Equation 8-147 subject to the boundary conditions of Danckwerts and Wehner and Wilhelm [23] for species A gives... [Pg.743]

In this paper, we review progress in the experimental detection and theoretical modeling of the normal modes of vibration of carbon nanotubes. Insofar as the theoretical calculations are concerned, a carbon nanotube is assumed to be an infinitely long cylinder with a mono-layer of hexagonally ordered carbon atoms in the tube wall. A carbon nanotube is, therefore, a one-dimensional system in which the cyclic boundary condition around the tube wall, as well as the periodic structure along the tube axis, determine the degeneracies and symmetry classes of the one-dimensional vibrational branches [1-3] and the electronic energy bands[4-12]. [Pg.129]

These coupled second-order partial differential equations do not have a closed-form solution. Accordingly, the approximate numerical technique of finite differences is employed. First, however, the boundary conditions must be prescribed in order to complete the formulation of the problem. Symmetry of the laminate about several planes permits reduction of the region of consideration to a quarter of the laminate cross section in the y-z plane at any value of x as shown in Figure 4-52. There, along the stress-free upper surface. [Pg.266]

If the transverse loading is represented by the Fourier sine series in Equation (5.25), the solution to this fourth-order partial differential equation and subject to its associated boundary conditions is remarkably simple. As with isotropic plates, the solution can easily be verified to be... [Pg.290]

The solution to this fourth-order partial differential equation and associated homogeneous boundary conditions is just as simple as the analogous deflection problem in Section 5.3.1. The boundary conditions are satisfied by the variation in lateral displacement (for plates, 5w actually is the physical buckle displacement because w = 0 in the membrane prebuckling state however, 5u and 8v are variations from a nontrivial equilibrium state. Hence, we retain the more rigorous variational notation consistently) ... [Pg.304]


See other pages where Boundary conditions ordering is mentioned: [Pg.275]    [Pg.4]    [Pg.25]    [Pg.66]    [Pg.82]    [Pg.193]    [Pg.195]    [Pg.10]    [Pg.476]    [Pg.338]    [Pg.415]    [Pg.635]    [Pg.98]    [Pg.156]    [Pg.64]    [Pg.274]    [Pg.303]    [Pg.303]    [Pg.343]    [Pg.95]    [Pg.260]    [Pg.68]    [Pg.339]    [Pg.456]    [Pg.673]    [Pg.96]    [Pg.100]    [Pg.110]    [Pg.111]    [Pg.228]    [Pg.229]    [Pg.1160]    [Pg.465]    [Pg.132]    [Pg.263]   
See also in sourсe #XX -- [ Pg.27 , Pg.28 , Pg.29 , Pg.30 ]

See also in sourсe #XX -- [ Pg.27 , Pg.28 , Pg.29 , Pg.30 ]




SEARCH



© 2024 chempedia.info