Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bound quadratic objective function

LP software includes two related but fundamentally different kinds of programs. The first is solver software, which takes data specifying an LP or MILP as input, solves it, and returns the results. Solver software may contain one or more algorithms (simplex and interior point LP solvers and branch-and-bound methods for MILPs, which call an LP solver many times). Some LP solvers also include facilities for solving some types of nonlinear problems, usually quadratic programming problems (quadratic objective function, linear constraints see Section 8.3), or separable nonlinear problems, in which the objective or some constraint functions are a sum of nonlinear functions, each of a single variable, such as... [Pg.243]

Problem 4.1 is nonlinear if one or more of the functions/, gv...,gm are nonlinear. It is unconstrained if there are no constraint functions g, and no bounds on the jc,., and it is bound-constrained if only the xt are bounded. In linearly constrained problems all constraint functions g, are linear, and the objective/is nonlinear. There are special NLP algorithms and software for unconstrained and bound-constrained problems, and we describe these in Chapters 6 and 8. Methods and software for solving constrained NLPs use many ideas from the unconstrained case. Most modem software can handle nonlinear constraints, and is especially efficient on linearly constrained problems. A linearly constrained problem with a quadratic objective is called a quadratic program (QP). Special methods exist for solving QPs, and these iare often faster than general purpose optimization procedures. [Pg.118]

There are several insights that can be drawn from the numerical results of this example. As expected, both capacitated and uncapacitated cases show that the net profit of the centralized model outperforms the net profit of the decentralized model. The net profit of the centralized model serves an upper bound on the net profit of the decentralized model for both the capacitated and uncapacitated cases. For the centralized model, the net profit of the capacitated case is bounded by arc capacities of transportation, but the net profit of the uncapacitated case is constrained by the first-order condition of its quadratic concave objective function. [Pg.168]


See other pages where Bound quadratic objective function is mentioned: [Pg.104]    [Pg.69]    [Pg.408]    [Pg.51]    [Pg.1346]    [Pg.85]    [Pg.134]    [Pg.438]    [Pg.120]   
See also in sourсe #XX -- [ Pg.407 , Pg.412 ]




SEARCH



Object function

Objective function

Quadratic

Quadratic functions

Quadratic objective

Quadratic objective function

© 2024 chempedia.info