Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boronic acids oxidation

The use of oxidant such as molecular oxygen [60] or di-terf-bntylperoxide [61] with catalytic amount of copper led to eliminate the use of base in the boronic acid oxidative coupling (Scheme 20.28). Fu and coworkers used atmospheric oxygen as oxidant with Cu O for the selective synthesis of primary amines at room temperature using aqueous ammonia as an amine source [62]. Yamamoto and coworkers developed air- and water-stable cyclic triolborate complex to increase the nucleophilicity of the attached group in boronic acid derivative [63]. Copper-mediated selective coupling of methylboronic acids with primary amines has been subsequently developed [64]. [Pg.559]

Boron III) oxide, B2O3, is obtained by ignition of boric acid. Combines with water to reform B(0H)3. The fused oxide dissolves metal oxides to give borates. [Pg.66]

Boron trioxide is not particularly soluble in water but it slowly dissolves to form both dioxo(HB02)(meta) and trioxo(H3B03) (ortho) boric acids. It is a dimorphous oxide and exists as either a glassy or a crystalline solid. Boron trioxide is an acidic oxide and combines with metal oxides and hydroxides to form borates, some of which have characteristic colours—a fact utilised in analysis as the "borax bead test , cf alumina p. 150. Boric acid. H3BO3. properly called trioxoboric acid, may be prepared by adding excess hydrochloric or sulphuric acid to a hot saturated solution of borax, sodium heptaoxotetraborate, Na2B407, when the only moderately soluble boric acid separates as white flaky crystals on cooling. Boric acid is a very weak monobasic acid it is, in fact, a Lewis acid since its acidity is due to an initial acceptance of a lone pair of electrons from water rather than direct proton donation as in the case of Lowry-Bronsted acids, i.e. [Pg.148]

Moderate yields of acids and ketones can be obtained by paHadium-cataly2ed carbonylation of boronic acids and by carbonylation cross-coupling reactions (272,320,321). In an alternative procedure for the carbonylation reaction, potassium trialkylborohydride ia the presence of a catalytic amount of the free borane is utilized (322). FiaaHy, various tertiary alcohols including hindered and polycycHc stmctures become readily available by oxidation of the organoborane iatermediate produced after migration of three alkyl groups (312,313,323). [Pg.318]

Boronic acids RB(OH)2 were first made over a century ago by the unlikely route of slow partial oxidation of the spontaneously flammable trialkyl boranes followed by hydrolysis of the ester so formed (E. Frankland, 1862) ... [Pg.207]

The first total synthesis of 87 was published in 1990 (90TL1523). 5-Hydroxyindole (88) was mesylated and then reduced with sodium cyanoborohydride to give an indoline which was brominated to afford the bromoindoline 89 in good yield (Scheme 33). Cross-coupling with ortho-formyl boronic acid under Suzuki conditions, followed by air oxidation of the resulting cyclized product, followed by reduction of the lactam formed with excess Red-Al gave the target compound 87. [Pg.100]

The boronic acid 2 is first converted to an activated species 8 containing a tetravalent boron center by reaction with a base. Halides or triflates (OTf = trilluoromethanesulfonate) are used as coupling partners R-X for the boronic acids. In many cases the rate-limiting step is the oxidative addition. With respect to the leaving group X, the rate decreases in the order ... [Pg.272]

Boron, a metalloid with largely nonmetallic properties, has acidic oxides. Aluminum, its metallic neighbor, has amphoteric oxides (like its diagonal neighbor in Group 2, beryllium). The oxides of both elements are important in their own right, as sources of the elements, and as the starting point for the manufacture of other compounds. [Pg.720]

BVMOs were also reported to facilitate mild and chemoselective conversion of boronic acids to borates, which usually hydrolyze upon biotransformation conditions using isolates protein [217]. Additionally selenium oxidation has been described in analogy to sulfoxidations [218]. [Pg.256]

Latham J, AC Walsh (1986) Retention of configuration in oxidation of a chiral boronic acid by the flavoenzyme cyclohexanone oxygenase. J Chem Soc Chem Commun 527-528. [Pg.591]

Recently, Larock and coworkers used a domino Heck/Suzuki process for the synthesis of a multitude of tamoxifen analogues [48] (Scheme 6/1.20). In their approach, these authors used a three-component coupling reaction of readily available aryl iodides, internal alkynes and aryl boronic acids to give the expected tetrasubsti-tuted olefins in good yields. As an example, treatment of a mixture of phenyliodide, the alkyne 6/1-78 and phenylboronic acid with catalytic amounts of PdCl2(PhCN)2 gave 6/1-79 in 90% yield. In this process, substituted aryl iodides and heteroaromatic boronic acids may also be employed. It can be assumed that, after Pd°-cata-lyzed oxidative addition of the aryl iodide, a ds-carbopalladation of the internal alkyne takes place to form a vinylic palladium intermediate. This then reacts with the ate complex of the aryl boronic acid in a transmetalation, followed by a reductive elimination. [Pg.372]

This gives tautomeric mixtures119 when the tert-butyl group is removed. The methyl ether has been used to obtain 3-hydroxy-2-carbonyl derivatives in the selenophene series.120 The unsubstituted 2-hydroxyselenophene system has been prepared by hydrogen peroxide oxidation of 2-selenophene-boronic acid.121 However, in the 5-methyl-substituted system deboronation became such an important side reaction that 5-methyl-2-hydroxyselenophene had to be prepared by acid-catalyzed dealkylation of 5-methyl-2-fert-butoxy-selenophene. Both 2-hydroxy- and 5-methyl-2-hydroxyselenophene exist mainly as 3-selenolene-2-ones (93) and for the 5-methyl derivative it was possible to isolate the / ,y-unsaturated form (92) and follow the tautomeric isomerization. The activation parameters thus obtained were compared with those for the corresponding furan and thiophene systems. [Pg.156]

Dimethyl-3-hydroxyselenophene has been prepared by hydrogen peroxide oxidation of the corresponding boronic acids and esters.122 The... [Pg.156]

Scheme 6.6 Oxidative Heck coupling of boronic acids and alkenes using copper(ll) acetate as a reoxidant. Scheme 6.6 Oxidative Heck coupling of boronic acids and alkenes using copper(ll) acetate as a reoxidant.
Iron chelators can also be used to selectively bind iron in areas where oxidative stress is observed, thereby preventing the iron from taking part in Fenton reactions without interfering with normal iron homeostasis. Charkoudian et al. have developed boronic acid and boronic ester masked prochelators, which do not bind metals unless exposed to hydrogen peroxide (237,238). The binding of these chelators to iron(III) prevents redox cycling. Similar studies of these systems have been performed by a separate group (239,240). [Pg.237]

Snieckus described short syntheses of ungerimine (121) and hippadine by Suzuki couplings of boronic acid 118 with 7-bromo-5-(methylsulfonyloxy)indoline (116) and 7-iodoindoline (117), respectively [130]. Cyclization and aerial oxidation also occur. Treatment of 119 with Red-Al gave ungerimine (121) in 54% yield, and oxidation of 120 with DDQ afforded hippadine in 90% yield. Indoline 116 was readily synthesized from 5-hydroxyindole in 65% overall yield by mesylation, reduction of the indole double bond, and bromination. Indoline 117 was prepared in 67% yield from N-acetylindoline by thallation-iodination and basic hydrolysis. [Pg.100]

Pyridine-containing tricyclic compounds have been produced via a sequence consisting of a Suzuki reaction and a subsequent annulation. Gronowitz et al. coupled 2-formylthienyl-3-boronic acid with 3-amino-4-iodopyridine. The resulting adduct spontaneously condensed to yield thieno[2,3-c]-l,7-naphthyridine 59 [47]. They also synthesized thieno[3,4-c]-l,5-naphthyridine-9-oxide (60) in a similar fashion [48]. Neither the amino nor the N-oxide functional group was detrimental to the Suzuki reactions. [Pg.195]

The boronic acid ester B was synthesized by transesterification of the corresponding pinacolester A with (lR,2R)-l,2-dicyclohexyl-l,2-dihydroxyethane. Stereoselective chlorination of B was carried out with (dichloromethyl) lithium and zinc chloride. Reaction of the obtained chloroboronic ester C with lithio 1-decyne followed by oxidation of the intermediate D with alkaline hydrogen peroxide afforded the propargylic alcohol E. Treatment with acid to saponify the tert-butyl ester moiety and to achieve ring closure, produced lactone F. Finally, Lindlar-hydrogenation provided japonilure 70 in an excellent yield and high enantiomeric purity. [Pg.123]


See other pages where Boronic acids oxidation is mentioned: [Pg.66]    [Pg.111]    [Pg.391]    [Pg.82]    [Pg.719]    [Pg.173]    [Pg.109]    [Pg.74]    [Pg.480]    [Pg.171]    [Pg.174]    [Pg.203]    [Pg.100]    [Pg.199]    [Pg.739]    [Pg.740]    [Pg.195]    [Pg.178]    [Pg.308]    [Pg.249]    [Pg.132]    [Pg.102]    [Pg.650]    [Pg.652]    [Pg.245]    [Pg.378]    [Pg.139]    [Pg.70]    [Pg.533]   
See also in sourсe #XX -- [ Pg.292 ]




SEARCH



BORON OXIDES, BORIC ACID, AND BORATES

Boron oxidation

Boronates oxidation

Boronic acids, metal mediated oxidation

Boronic oxidation

Durene, oxidation with peroxytrifluoroacetic acid and boron trifluoride

Hexaethylbenzene, oxidation with peroxytrifluoroacetic acid and boron

Hexaethylbenzene, oxidation with peroxytrifluoroacetic acid and boron Hexaethyl-2,4-cyclohexadienone

Hexaethylbenzene, oxidation with peroxytrifluoroacetic acid and boron trifluoride

Isodurene, oxidation with peroxytrifluoroacetic acid and boron trifluoride

© 2024 chempedia.info