Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Born-Oppenheimer approximation effects

Bunker, P.R., Moss, R.E. Breakdown of Born-Oppenheimer approximation—effective vibration-rotation Hamiltonian for a diatomic molecule. Mol. Phys. 1977,33,417-24 ... [Pg.170]

There are phenomena such as the Renner and the Jahn-Teller effects where the Bom-Oppenheimer approximation breaks down, hut for the vast majority of chemical applications the Born-Oppenheimer approximation is a vital one. It has a great conceptual importance in chemistry without it we could not speak of a molecular geometry. [Pg.75]

The Hamiltonian for this system should include the kinetic and potential energy of the electron and both of the nuclei. However, since the electron mass is more than a thousand times smaller than that of the lightest nucleus, one can consider the nuclei to be effectively motionless relative to the quickly moving electron. This assumption, which is basically the Born-Oppenheimer approximation, allows one to write the Schroedinger equation neglecting the nuclear kinetic energy. For the Hj ion the Born-Oppenheimer Hamiltonian is... [Pg.4]

The applicability of the Born-Oppenheimer approximation for complex molecular systems is basic to all classical simulation methods. It enables the formulation of an effective potential field for nuclei on the basis of the SchrdJdinger equation. In practice this is not simple, since the number of electrons is usually large and the extent of configuration space is too vast to allow accurate initio determination of the effective fields. One has to resort to simplifications and semi-empirical or empirical adjustments of potential fields, thus introducing interdependence of parameters that tend to obscure the pure significance of each term. This applies in... [Pg.107]

Below we will use Eq. (16), which, in certain models in the Born-Oppenheimer approximation, enables us to take into account both the dependence of the proton tunneling between fixed vibrational states on the coordinates of other nuclei and the contribution to the transition probability arising from the excited vibrational states of the proton. Taking into account that the proton is the easiest nucleus and that proton transfer reactions occur often between heavy donor and acceptor molecules we will not consider here the effects of the inertia, nonadiabaticity, and mixing of the normal coordinates. These effects will be considered in Section V in the discussion of the processes of the transfer of heavier atoms. [Pg.131]

The effects of deviations from the Born-Oppenheimer approximation (BOA) due to the interaction of the electron in the sub-barrier region with the local vibrations of the donor or the acceptor were considered for electron transfer processes in Ref. 68. It was shown that these effects are of importance for long-distance electron transfer since in this case the time when the electron is in the sub-barrier region may be long as compared to the period of the local vibration.68 A similar approach has been used in Ref. 65 to treat non-adiabatic effects in the sub-barrier region in atom transfer processes. However, nonadiabatic effects in the classically attainable region may also be of importance in atom transfer processes. In the harmonic approximation, when these effects are taken into account exactly, they manifest themselves in the noncoincidence of the... [Pg.151]

Marcus uses the Born-Oppenheimer approximation to separate electronic and nuclear motions, the only exception being at S in the case of nonadiabatic reactions. Classical equilibrium statistical mechanics is used to calculate the probability of arriving at the activated complex only vibrational quantum effects are treated approximately. The result is... [Pg.189]

One branch of chemistry where the use of quantum mechanics is an absolute necessity is molecular spectroscopy. The topic is interaction between electromagnetic waves and molecular matter. The major assumption is that nuclear and electronic motion can effectively be separated according to the Born-Oppenheimer approximation, to be studied in more detail later on. The type of interaction depends on the wavelength, or frequency of the radiation which is commonly used to identify characteristic regions in the total spectrum, ranging from radio waves to 7-rays. [Pg.280]

We wanted to extend this approach to include dynamical effects on line shapes. As discussed earlier, for this approach one needs a trajectory co t) for the transition frequency for a single chromophore. One could extract a water cluster around the HOD molecule at every time step in an MD simulation and then perform an ab initio calculation, but this would entail millions of such calculations, which is not feasible. Within the Born Oppenheimer approximation the OH stretch potential is a functional of the nuclear coordinates of all the bath atoms, as is the OH transition frequency. Of course we do not know the functional. Suppose that the transition frequency is (approximately) a function of a one or more collective coordinates of these nuclear positions. A priori we do not know which collective coordinates to choose, or what the function is. We explored several such possibilities, and one collective coordinate that worked reasonably well was simply the electric field from all the bath atoms (assuming the point charges as assigned in the simulation potential) on the H atom of the HOD molecule, in the direction of the OH bond. [Pg.72]

It has already been noted that the new quantum theory and the Schrodinger equation were introduced in 1926. This theory led to a solution for the hydrogen atom energy levels which agrees with Bohr theory. It also led to harmonic oscillator energy levels which differ from those of the older quantum mechanics by including a zero-point energy term. The developments of M. Born and J. R. Oppenheimer followed soon thereafter referred to as the Born-Oppenheimer approximation, these developments are the cornerstone of most modern considerations of isotope effects. [Pg.33]

Obviously, there is an isotope effect on the vibrational frequency v . For het-eroatomic molecules (e.g. HC1 and DC1), infrared spectroscopy permits the experimental observation of the molecular frequencies for two isotopomers. What does one learn from the experimental observation of the diatomic molecule frequencies of HC1 and DC1 To the extent that the theoretical consequences of the Born-Oppenheimer Approximation have been correctly developed here, one can deduce the diatomic molecule force constant f from either observation and the force constant will be independent of whether HC1 or DC1 was employed and, for that matter, which isotope of chlorine corresponded to the measurement as long as the masses of the relevant isotopes are known. Thus, from the point of view of isotope effects, the study of vibrational frequencies of isotopic isomers of diatomic molecules is a study involving the confirmation of the Born-Oppenheimer Approximation. [Pg.58]

How one obtains the three normal mode vibrational frequencies of the water molecule corresponding to the three vibrational degrees of freedom of the water molecule will be the subject of the following section. The H20 molecule has three normal vibrational frequencies which can be determined by vibrational spectroscopy. There are four force constants in the harmonic force field that are not known (see Equation 3.6). The values of four force constants cannot be determined from three observed frequencies. One needs additional information about the potential function in order to determine all four force constants. Here comes one of the first applications of isotope effects. If one has frequencies for both H20 and D20, one knows that these frequencies result from different atomic masses vibrating on the same potential function within the Born-Oppenheimer approximation. Thus, we... [Pg.59]

It is important to point out here, in an early chapter, that the Born-Oppenheimer approximation leads to several of the major applications of isotope effect theory. For example the measurement of isotope effects on vapor pressures of isotopomers leads to an understanding of the differences in the isotope independent force fields of liquids (or solids) and the corresponding vapor molecules with which they are in equilibrium through use of statistical mechanical theories which involve vibrational motions on isotope independent potential functions. Similarly, when one goes on to the consideration of isotope effects on rate constants, one can obtain information about the isotope independent force constants which characterize the transition state, and how they compare with those of the reactants. [Pg.60]

The statement applies not only to chemical equilibrium but also to phase equilibrium. It is obviously true that it also applies to multiple substitutions. Classically isotopes cannot be separated (enriched or depleted) in one molecular species (or phase) from another species (or phase) by chemical equilibrium processes. Statements of this truth appeared clearly in the early chemical literature. The previously derived Equation 4.80 leads to exactly the same conclusion but that equation is limited to the case of an ideal gas in the rigid rotor harmonic oscillator approximation. The present conclusion about isotope effects in classical mechanics is stronger. It only requires the Born-Oppenheimer approximation. [Pg.100]


See other pages where Born-Oppenheimer approximation effects is mentioned: [Pg.380]    [Pg.499]    [Pg.82]    [Pg.164]    [Pg.106]    [Pg.208]    [Pg.390]    [Pg.405]    [Pg.119]    [Pg.143]    [Pg.154]    [Pg.474]    [Pg.68]    [Pg.78]    [Pg.584]    [Pg.848]    [Pg.7]    [Pg.19]    [Pg.25]    [Pg.26]    [Pg.27]    [Pg.28]    [Pg.32]    [Pg.37]    [Pg.42]    [Pg.50]    [Pg.51]    [Pg.62]    [Pg.99]    [Pg.128]    [Pg.188]    [Pg.409]    [Pg.21]   
See also in sourсe #XX -- [ Pg.220 ]




SEARCH



Approximation effect

Born approximation

Born-Oppenheimer approximation

Born-Oppenheimer effects

Oppenheimer approximation

© 2024 chempedia.info