Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bonding, Crystals, and Intermolecular Forces

There are four basic methods in wide use for the study of polymer crystallinity X-ray diffraction, electron diffraction, infrared absorption, and Raman spectra. The first two methods constitute the fundamental basis for crystal cell size and form, and the latter two methods provide a wealth of supporting data such as bond distances and intermolecular attractive forces. These several methods are now briefly described. [Pg.246]

In most covalent compounds, the strong covalent bonds link the atoms together into molecules, but the molecules themselves are held together by much weaker forces, hence the low melting points of molecular crystals and their inability to conduct electricity. These weak intermolecular forces are called van der WaaFs forces in general, they increase with increase in size of the molecule. Only... [Pg.47]

C. I. Pigment Red 183 (214), which range in shades from yellow to bluish-red and brown and exhibit excellent fastness properties. Their good stability to light and heat and their insolubility is attributed to extensive intermolecular association as a result of hydrogen bonding and dipolar forces in the crystal structure, as illustrated in Figure 9.3. [Pg.164]

Figure 5.2 (a) Electron density contour map of the CI2 molecule (see Chapter 6) showing that the chlorine atoms in a CI2 molecule are not portions of spheres rather, the atoms are slightly flattened at the ends of the molecule. So the molecule has two van der Waals radii a smaller van der Waals radius, r2 = 190 pm, in the direction of the bond axis and a larger radius, r =215 pm, in the perpendicular direction, (b) Portion of the crystal structure of solid chlorine showing the packing of CI2 molecules in the (100) plane. In the solid the two contact distances ry + ry and ry + r2 have the values 342 pm and 328 pm, so the two radii are r 1 = 171 pm and r2 = 157, pm which are appreciably smaller than the radii for the free CI2 molecule showing that the molecule is compressed by the intermolecular forces in the solid state. [Pg.114]

The term molecular crystal refers to crystals consisting of neutral atomic particles. Thus they include the rare gases He, Ne, Ar, Kr, Xe, and Rn. However, most of them consist of molecules with up to about 100 atoms bound internally by covalent bonds. The dipole interactions that bond them is discussed briefly in Chapter 3, and at length in books such as Parsegian (2006). This book also discusses the Lifshitz-Casimir effect which causes macroscopic solids to attract one another weakly as a result of fluctuating atomic dipoles. Since dipole-dipole forces are almost always positive (unlike monopole forces) they add up to create measurable attractions between macroscopic bodies. However, they decrease rapidly as any two molecules are separated. A detailed history of intermolecular forces is given by Rowlinson (2002). [Pg.158]


See other pages where Bonding, Crystals, and Intermolecular Forces is mentioned: [Pg.65]    [Pg.67]    [Pg.69]    [Pg.71]    [Pg.73]    [Pg.75]    [Pg.77]    [Pg.79]    [Pg.81]    [Pg.83]    [Pg.85]    [Pg.87]    [Pg.89]    [Pg.65]    [Pg.67]    [Pg.69]    [Pg.71]    [Pg.73]    [Pg.75]    [Pg.77]    [Pg.79]    [Pg.81]    [Pg.83]    [Pg.85]    [Pg.87]    [Pg.89]    [Pg.219]    [Pg.144]    [Pg.104]    [Pg.181]    [Pg.509]    [Pg.543]    [Pg.449]    [Pg.468]    [Pg.70]    [Pg.459]    [Pg.27]    [Pg.199]    [Pg.308]    [Pg.313]    [Pg.11]    [Pg.21]    [Pg.81]    [Pg.165]    [Pg.3]    [Pg.126]    [Pg.32]    [Pg.238]    [Pg.200]    [Pg.217]    [Pg.597]    [Pg.682]    [Pg.6]    [Pg.126]    [Pg.169]    [Pg.27]   


SEARCH



And intermolecular forces

Bonding crystals

Bonding intermolecular forces

Bonds and forces

Crystal forces

Intermolecular bonding

Intermolecular bonding bonds

Intermolecular bonds

Intermolecular force bonding forces

© 2024 chempedia.info