Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boltzmann distribution dynamics

Such a free energy is called a potential of mean force. Average values of Fs can be computed in dynamics simulations (which sample a Boltzmann distribution), and the integral can be estimated from a series of calculations at several values of s. A third method computes the free energy for perturbing the system by a finite step in s, for example, from si to S2, with... [Pg.134]

Methods of disturbing the Boltzmann distribution of nuclear spin states were known long before the phenomenon of CIDNP was recognized. All of these involve multiple resonance techniques (e.g. INDOR, the Nuclear Overhauser Effect) and all depend on spin-lattice relaxation processes for the development of polarization. The effect is referred to as dynamic nuclear polarization (DNP) (for a review, see Hausser and Stehlik, 1968). The observed changes in the intensity of lines in the n.m.r. spectrum are small, however, reflecting the small changes induced in the Boltzmann distribution. [Pg.55]

The basic principles are described in many textbooks [24, 26]. They are thus only sketchily presented here. In a conventional classical molecular dynamics calculation, a system of particles is placed within a cell of fixed volume, most frequently cubic in size. A set of velocities is also assigned, usually drawn from a Maxwell-Boltzmann distribution appropriate to the temperature of interest and selected in a way so as to make the net linear momentum zero. The subsequent trajectories of the particles are then calculated using the Newton equations of motion. Employing the finite difference method, this set of differential equations is transformed into a set of algebraic equations, which are solved by computer. The particles are assumed to interact through some prescribed force law. The dispersion, dipole-dipole, and polarization forces are typically included whenever possible, they are taken from the literature. [Pg.271]

Direct dynamics trajectory calculations at the MP2/6-31-FG level of theory were then used to explore the reaction dynamics of this system [63]. Sixty-four trajectories were started from the central barrier shown at A in Fig. 11, with initial conditions sampled from a 300 K Boltzmann distribution. Of the 31 trajectories that moved in the direction of products, four trajectories followed the MEP and became trapped in the hydrogen-bonded [CH3OH ... [Pg.247]

One may also show that MPC dynamics satisfies an H theorem and that any initial velocity distribution will relax to the Maxwell-Boltzmann distribution [11]. Figure 2 shows simulation results for the velocity distribution function that confirm this result. In the simulation, the particles were initially uniformly distributed in the volume and had the same speed v = 1 but different random directions. After a relatively short transient the distribution function adopts the Maxwell-Boltzmann form shown in the figure. [Pg.95]

The effect of hydrodynamic interactions on polymer collapse has also been studied using MPC dynamics, where the polymer beads are included in the multiparticle collision step [28, 84]. Hydrodynamic interactions can be turned off by replacing multiparticle collisions in the cells by sampling of the particle velocities from a Boltzmann distribution. Collapse occurs more rapidly in the... [Pg.126]

Maxwell-Boltzmann distribution, multiparticle collision dynamics, 95... [Pg.283]

The above derivation shows that Jarzynski s identity is an immediate consequence of the Feynman-Kac theorem. This connection has not only theoretical value, but is also useful in practice. First, it forms the basis for an equilibrium thermodynamic analysis of nonequilibrium pulling experiments [3, 15]. Second, it helps in deriving a Jarzynski identity for dynamics using thermostats. Moreover, this derivation clarifies an important aspect trajectories can be thought of as mapping initial conditions (I = 0) to trajectory endpoints, and the Boltzmann factor of the accumulated work reweights that map to give the desired Boltzmann distribution. Finally, it can be easily extended to transformations between steady states [17] in which non-Boltzmann distributions are stationary. [Pg.177]

Here, w(xfc) is the weighting factor for any property at a given position on the fcth step xfc. For example, for a constant-temperature molecular dynamics or a Metropolis MC run, the weighting factor is unity. However, we wish to leave some flexibility in case we want to use non-Boltzmann distributions then, the weighting factor will be given by a more complicated function of the coordinates. The ergodic measure is then defined as a sum over N particles... [Pg.279]

When calculating free energies, one generates, either by molecular dynamics or MC, configuration space samples distributed according to a probability distribution function (e.g., the Boltzmann distribution in the case of the Helmholtz free energy). [Pg.279]

Boltzmann distribution, electron nuclear dynamics (END), intramolecular electron transfer, 350-351... [Pg.68]

Readout of the ligand information by a substrate is achieved at the rates with which L and S associate and dissociate it is thus determined by the complexation dynamics. In a mixture of ligands Li, L2. .. L and substrates Si, S2. . - S , information readout may assume a relaxation behaviour towards the thermodynamically most stable state of the system. At the absolute zero temperature this state would contain only complementary LiSi, L2S2. .. L S pairs at any higher temperature this optimum complementarity state (with zero readout errors) will be scrambled into an equilibrium Boltzmann distribution, containing the corresponding readout errors (LWS , n n ), by the noise due to thermal agitation. [Pg.6]

The dynamics of the O Dj) + H2S -> OH(t/) + HS reaction have recently been investigated. Time-resolved spectra at 0.4 cm-1 resolution were recorded at 40-/rs intervals, beginning at 20 fj.s and continuing until 540 fis after the laser pulse. The time-dependent OH vibrational populations recorded in this experiment are shown in Figure 15. The rotational distributions in all vibrational levels at all observation times could be fitted by near room-temperature Boltzmann distributions. The vibrational distribution obtained at the earliest time (corresponding to approximately two gas-kinetic collisions after the reaction) was strongly inverted [45]. The LIF measurements... [Pg.38]

Ab initio direct dynamics trajectory calculations were performed at the B3LYP/6-311+G(d,p) level of theory.39 The trajectories were initiated at the separated reactants, TS (HOOCH3- F ), and the CII 2( 011)0 H- F region on IRC, with quasiclassical sampling including ZPE. The trajectories from the reactants were started at 15 A separation of the two species with small attractive potentials of -0.21 or -0.13 kcalmol-1. The collision impact parameter was chosen randomly between zero and maximum. The initial CH3OOH vibrational and rotational degrees of freedom were selected from their 300 K Boltzmann distributions. [Pg.192]

The ring-opening reaction of cyclopropyl radical [Equation (7)] was shown to occur at 174°C to give ally radical, but the product stereochemistry was unclear. Ab initio direct dynamics study was carried out to clarify the stereochemical course of the reaction.40 Trajectories were initiated at the ringopening TS obtained at CASSCF(3,3)/6-31G(d), with quasiclassical normal sampling at the experimental temperature of 174°C. ZPE was included, and thermal vibrational energy was sampled from the normal-mode Boltzmann distribution. A rotational energy of RT/2 was added toward the allyl radical product. [Pg.192]

In order to reconcile this discrepancy, dynamics effect was examined by means of ab initio MD simulations at (U)B3LYP/6-31G. 44 Trajectories were initiated at the TS for the denitrogenation from 27 (R = Z = H) to 31 with 353 K Boltzmann distribution for the reaction coordinate translation. Out of 10 trajectories, 1 went back to the reactant, 8 gave 31, and 1 led directly to 29. Thus, the trajectory calculations reproduced experimental trend reported in the literature,45 namely spiropentane is the major product for the reaction of the parent 4-spirocyclopropane-l-pyrazoline. [Pg.199]

Today, non-equilibrium reaction theory has been developed. Unlike the absolute rate theory, it does not require the fulfilment of the Maxwell-Boltzmann distribution. Calculations are carried out on large computers, enabling one to obtain abundant information on the dynamics of elementary chemical acts. The present situation is extensively clarified in the proceed-dings of two symposia in the U.S.A. [23, 24]. [Pg.56]


See other pages where Boltzmann distribution dynamics is mentioned: [Pg.900]    [Pg.313]    [Pg.319]    [Pg.499]    [Pg.164]    [Pg.670]    [Pg.46]    [Pg.7]    [Pg.3]    [Pg.551]    [Pg.8]    [Pg.268]    [Pg.339]    [Pg.342]    [Pg.175]    [Pg.128]    [Pg.270]    [Pg.102]    [Pg.158]    [Pg.207]    [Pg.217]    [Pg.359]    [Pg.1029]    [Pg.164]    [Pg.189]    [Pg.102]    [Pg.270]    [Pg.234]   


SEARCH



Boltzmann distribution

Dynamic distribution

© 2024 chempedia.info