Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boltzmann constant simulation

The reduction in the number of degrees of freedom can lead to an incorrect pressure in the simulation of the coarse-grained systems in NVT ensembles or to an incorrect density in NPT ensembles [24], The pressure depends linearly on the pair-forces in the system, hence the effect of the reduced number of degrees of freedom can be accounted for during the force matching procedure [24], If T is the temperature, V the volume, N the number of degrees of freedom of the system, and kb the Boltzmann constant then the pressure P of a system is given by... [Pg.205]

The connection between the multiplicative insensitivity of 12 and thermodynamics is actually rather intuitive classically, we are normally only concerned with entropy differences, not absolute entropy values. Along these lines, if we examine Boltzmann s equation, S = kB In 12, where kB is the Boltzmann constant, we see that a multiplicative uncertainty in the density of states translates to an additive uncertainty in the entropy. From a simulation perspective, this implies that we need not converge to an absolute density of states. Typically, however, one implements a heuristic rule which defines the minimum value of the working density of states to be one. [Pg.16]

Our simulations are based on well-established mixed quantum-classical methods in which the electron is described by a fully quantum-statistical mechanical approach whereas the solvent degrees of freedom are treated classically. Details of the method are described elsewhere [27,28], The extent of the electron localization in different supercritical environments can be conveniently probed by analyzing the behavior of the correlation length R(fih/2) of the electron, represented as polymer of pseudoparticles in the Feynman path integral representation of quantum mechanics. Using the simulation trajectories, R is computed from the mean squared displacement along the polymer path, R2(t - t ) = ( r(f) - r(t )l2), where r(t) represents the electron position at imaginary time t and 1/(3 is Boltzmann constant times the temperature. [Pg.446]

Equations 28-35 and 28-36 are known as Newton s equations of motion. MD. simulations apply these two cquatioas to all the atoms in a molecular structure. According to the kinetic-molecular theorem, the kinetic energy is proportional to the temperature. This remarkable relationship is shown in Equation 28-37 without derivation, where M is the number of molecules, h is the Boltzmann constant, and Tis the abso-... [Pg.933]

Complementing the information conveyed by Ty, a fugacity f is introduced and defined as f = Nj/Nfib), where Nj is the expected number of water molecules in Dj at equilibrium and Nj(b), the number associated with the same volume in bulk solvent. Thus, the chemical potential p,j of water in Dj becomes prj = k Tln [A//A/(b)] ( b= Boltzmann constant). The 0-dependence of T, /-values (Fig. 14.1) is obtained at equilibrium determined from classical trajectories generated by molecular dynamics (MD) simulations within an NPT ensemble of the type described in Chap. 4. The computations start with the protein... [Pg.218]

Here s(co) = s (co) + ie" (co) is the permittivity with the complex-conjugation symbol omitted, is the refractive index at infinite frequency, Vis the volume of the simulation cell, kB is the Boltzmann constant, X is the wavelength, and T is temperature. M is the total dipole moment of the simulation cell with the angular brackets indicating the ensemble average. The dipole moment is computed as... [Pg.506]


See other pages where Boltzmann constant simulation is mentioned: [Pg.490]    [Pg.224]    [Pg.167]    [Pg.360]    [Pg.242]    [Pg.83]    [Pg.404]    [Pg.208]    [Pg.41]    [Pg.940]    [Pg.204]    [Pg.89]    [Pg.7]    [Pg.342]    [Pg.316]    [Pg.96]    [Pg.108]    [Pg.16]    [Pg.245]    [Pg.132]    [Pg.167]    [Pg.10]    [Pg.297]    [Pg.724]    [Pg.19]    [Pg.265]    [Pg.313]    [Pg.83]    [Pg.425]    [Pg.485]    [Pg.205]    [Pg.346]    [Pg.431]    [Pg.34]    [Pg.66]    [Pg.158]    [Pg.446]    [Pg.475]    [Pg.208]    [Pg.70]    [Pg.275]    [Pg.97]    [Pg.40]   
See also in sourсe #XX -- [ Pg.54 , Pg.55 ]




SEARCH



Boltzmann constant

Monte Carlo simulations Boltzmann constant

© 2024 chempedia.info