Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bloch/Wangsness/Redfield relaxation theory

Fig. 45a, b. Frequency dependence of the deuteron spin-lattice relaxation time of perdeuterated PEG confined in 10-nm pores of solid PHEMA at 80 °C (a) and in bulk melts (b) [95, 185]. The dispersion of the confined polymers verifies the law Ti (X M° ft)° at high frequencies as predicted for limit (II)de of the tube/reptation model (see Table 1). The low-frequency plateau observed with the confined polymers indicates that the correlation function implies components decaying more slowly than the magnetization relaxation curves, so that the Bloch/Wangsness/Redfield relaxation theory [2] is no longer valid in this regime. The plateau value corresponds to the transverse relaxation time, T2, for deuterons extrapolated from the high-field value measured at 9.4 T... [Pg.105]

The theory of nuclear spin relaxation (see monographs by Slichter [4], Abragam [5] and McConnell [6] for comprehensive presentations) is usually formulated in terms of the evolution of the density operator, cr, for the spin system under consideration from some kind of a non-equilibrium state, created normally by one or more radio-frequency pulses, to thermal equilibrium, described by Using the Bloch-Wangsness-Redfield (BWR) theory, usually appropriate for the liquid state, we can write [7, 8] ... [Pg.328]

A more general formulation of relaxation theory, suitable for systems with scalar spin-spin couplings (J-couplings) or for systems with spin quantum numbers higher than 1/2, is known as the Wangsness, Bloch and Redfield (WBR) theory or the Redfield theory 17). In analogy with the Solomon-Bloembergen formulation, the Redfield theory is also based on the second-order perturbation approach, which in certain situations (not uncommon in... [Pg.52]

In the frame of the Bloch/Wangsness/Redfield (BWR) relaxation theory [2, 17], the fluctuations of the spin Hamiltonians are described with the aid of (preferably normalized) autocorrelation functions of the type... [Pg.15]

Spin relaxation phenomena in general are usually described by the semi-classical theory developed by Wangsness, Bloch and Redfield. The semi-classical nature of the theory implies that the spin system is treated quantum mechanically, while the remaining degrees of freedom (such as molecular... [Pg.251]

Spin relaxation phenomena are usually described by the semiclassical theory developed by Wangsness, Bloch and Redfield and known as the WBR theory or Redfield theory. The semiclassical nature of the theory implies that the spin system is treated quantum mechanically, while the remaining degrees of freedom (such as molecular rotations) are treated classically. Few years ago, Segnorile and Zamar studied the issue of quantum decoherence (loss of system phase memory) in proton NMR of nematic liquid crystals. The spin dynamics - and the decay of the free induction decay - was found to be governed by several different processes, partly of purely quantum nature. During the period under the present review, the same group reported a related work concerned with the Jeener-Broekaert experiment on liquid crystals. ... [Pg.258]


See other pages where Bloch/Wangsness/Redfield relaxation theory is mentioned: [Pg.104]    [Pg.104]    [Pg.1502]    [Pg.1502]    [Pg.419]    [Pg.341]    [Pg.419]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Bloch

Bloch theory

Bloch-Redfield theory

Bloch/Wangsness/Redfield

Redfield relaxation theory

Redfield theory

Relaxation theory

© 2024 chempedia.info